摘要:
The present invention relates to hydrodynamic bearings, X-ray tubes, X-ray systems, and a method of manufacturing a hydrodynamic bearing for an X-ray tube. The rotor of a hydrodynamic bearing is supported, in steady-state operation, by the pressure of lubricant which is pumped through grooves in the rotor. When the rotor is speeding up or slowing down, the pumping force will not be sufficient to lift the rotor clear of a stationary bushing, and damage, caused by direct contact of the metal surfaces of the bearing, can occur. Providing special coatings on the bearing surfaces can ameliorate this effect.
摘要:
A self-acting, sealed hydrodynamic bearing includes a bearing shaft; a bearing bushing arranged to seal a length of the bearing shaft; a lubricant provided in the sealed length of the hydrodynamic bearing; and a bearing arrangement between the shaft and bushing. The bearing shaft and/or the bearing bushing are configured to be rotatable. The bearing arrangement includes a primary bearing surface disposed on the bearing bushing, arranged to face a secondary bearing surface disposed on the bearing shaft. The primary and/or secondary bearing surfaces includes first regions having a first fluid slip characteristic, and second regions having a second fluid slip characteristic substantially different to that of the first fluid slip characteristic. The second and first regions are in a same plane of a cross-section of the primary and/or secondary bearing surfaces, and are disposed in an interleaved pattern over the primary and/or secondary bearing surfaces.
摘要:
An X-ray tube, a medical X-ray device comprising such X-raytube and a method for operating such X-ray tube are proposed. The X-ray tube (1) comprises an electron emitter (3) with a substrate (4) having an electron emission surface (5). The electron emission surface (5) is adapted for field emission of electrons therefrom by providing a substantial roughness Such roughness may be obtained by applying carbon nano-tubes (19) onto the electron emission surface (5). A field generator (7) is provided for generating an electrical field adjacent to the electron emission surface (5) for inducing field emission of electrons therefrom. Furthermore, a heater arrangement (15) is provided and adapted for heating the electron emission surface (5) contemporaneous with the field emission of electrons. Accordingly, while electrons are emitted from the electron emission surface (5) due to a field effect, this electron emission surface (5) may also be heated to substantial temperatures of between 100 and 1000° C. It has been observed that such heating may stabilize electron emission characteristics as the emitter (3)as adsorbents or contaminations to the carbon nano-tubes may be reduced.
摘要:
At least one power supply produces a voltage between a cathode and an anode. The cathode and anode are operable such that electrons emitted from the cathode interact with the anode with energies corresponding to the voltage. The electrons interact with the anode at a focal spot to generate X-rays. The power supply provides the cathode with a cathode current. An electron detector is positioned relative to the anode, and a backscatter electron signal is measured from the anode. The measured backscatter electron signal is provided to a processing unit, which determines a cathode current correction and/or a correction to the voltage between the cathode and the anode using the measured backscatter electron signal and a correlation between anode surface roughness and backscatter electron emission.
摘要:
The present invention relates to a mobile X-ray device, comprising: a housing with an X-ray source arranged therein, a sensor system comprising one or more sensors for aligning the X-ray source to an object to be scanned and/or detecting at least one extrinsic object in a predefined area in a vicinity of the X-ray beam of the X-ray source; a processor unit comprising determining the alignment of the X-ray source and the object to be scanned based on signals received from the sensor system; image acquisition for generating an X-ray image; activating a blockage signal for the mobile X-ray device based on signals received from the sensor system; and an interface for outputting the generated X-ray image and/or information; wherein image acquisition is blocked, if the sensor system signals one of the following: at least one extrinsic object is detected within the predefined area; lack of alignment between the X-ray source and the object to be scanned.