Abstract:
An interventional tool stepper (30) employing a frame (31), a carriage (33), an optional gear assembly (32), and an optional grid template(34). The frame (31) is structurally configured to be positioned relative to an anatomical region for holding an interventional tool (40) relative to the anatomical region. The carriage (33) is structurally configured to hold the interventional tool (40) relative to the anatomical region. The gear assembly (32) is structurally configured to translate and/or rotate the carriage (33) relative to the frame (31). The grid template (34) is structurally configured to guide one or more additional interventional tools (41) relative to the anatomical region. The frame (31), the carriage (33), the optional gear assembly (32) and the optional grid template (34) have an electromagnetic-compatible material composition for minimizing any distortion by the interventional tool stepper (30) of an electromagnetic field.
Abstract:
A registration system for medical navigation includes a shape sensing device (SSD) (104, 504) having at least one sensor (450, 505) for providing corresponding sensor information (SI) indicative of at least one of a position of the at least one sensor (450, 505); a registration fixture (106) having a channel (130) configured to receive at least part of the SSD and defining a registration path (P). The registration fixture may be configured to be attached to a registrant object (RO) (119) defining a workspace. A controller (110) may be configured to: sense a shape of a path traversed by the SSD based upon the SI when the at least one sensor is situated within the channel (130), determine whether the sensed shape of the path corresponds with a known shape selected from one or more known shapes, and perform a coordinate registration based upon the determination.
Abstract:
An electromagnetic (“EM”) tracking configuration system employs an EM quality assurance (“EMQA”) (30) and EM data coordination (“DC”) system (70). For the EMQA system (30), an EM sensor block (40) includes EM sensor(s) (22) positioned and oriented to represent a simulated electromagnetic tracking of interventional tool(s) inserted through electromagnetic sensor block (40) into an anatomical region. As an EM field generator (20) generates an EM field (21) encircling EM sensor(s) (22), an EMQA workstation (50) tests an EM tracking accuracy of an insertion of the interventional tool(s) through the EM sensor block (40) into the anatomical region. For the EMDC system (70), as EM field generator (20) generates EM field (21) encircling a mechanical interaction of EM calibration tool(s) (80) with a grid (120) for guiding interventional tool(s) through gird (120) into an anatomical region, the electromagnetic data coordination workstation (90) establishes a coordination system for electromagnetically tracking an insertion of the interventional tool(s) through grid (120) into the anatomical region.
Abstract:
A force feedback gripping device employs a mechanical gripper (23), an electromagnetic actuator (22) and a force feedback controller (21). The mechanical gripper (23) is operable to be actuated to one of a plurality of gripping poses for gripping an object. The electromagnetic actuator (22) includes a magnetorheological elastomer (“MRE”), wherein the MRE is operable to be transitioned between a plurality of shapes dependent upon a variable strength of a magnetic field applied to the MRE, and wherein each shape of the MRE actuates the mechanical gripper (23) to one of the gripping poses. The force feedback controller (21) is operable to control the variable strength of the magnetic field applied to the MRE based on an estimation of a gripping force of the mechanical gripper (23) and on a sensing of a load force of the object responsive to the gripping force of the mechanical gripper (23).
Abstract:
An ultrasound system includes a 3D imaging probe and a needle guide which attaches to the probe for guidance of the insertion of multiple needles into a volumetric region which can be scanned by the 3D imaging probe. The needle guide responds to the insertion of a needle through the guide by identifying a plane for scanning by the probe which is the insertion plane through which the needle will pass during insertion. The orientation of the insertion plane is communicated to the probe to cause the probe to scan the identified plane and produce images of the needle as it travels through the insertion plane.
Abstract:
An apparatus for performing a medical procedure is disclosed. The apparatus includes a sensor adapted to convert an ultrasonic signal incident thereon into an electrical signal; and a wireless transceiver configured to receive the electrical signal from the sensor, and to transmit the electrical signal to a wireless receiver remotely located from the apparatus.
Abstract:
An ultrasound system employs an ultrasound probe (31), a strain sensor (33) and a workstation (20). The ultrasound probe (31) includes an ultrasound transducer for acquiring ultrasound images (40) of an anatomical region. The strain sensor (33) is arranged on the ultrasound probe (31) to measure a longitudinal strain applied by the anatomical region to the ultrasound probe (31) as the ultrasound transducer acquires ultrasound images (40) of the anatomical region. The strain sensor (33) encircles a longitudinal axis of the ultrasound probe (31) and is spaced from the ultrasound transducers relative to the longitudinal axis of the ultrasound probe (31). The workstation (20) reconstructs an ultrasound volume (41) from the ultrasound images (40) acquired by ultrasound transducer, and responsive to the longitudinal strain measured by strain sensor (33), determines an axial force and/or 36 a bending force applied by the anatomical region to the ultrasound probe (31) as the ultrasound transducer acquires ultrasound images (40) of the anatomical region.
Abstract:
An apparatus for performing a medical procedure is disclosed. The apparatus includes a sensor adapted to convert an ultrasonic signal incident thereon into an electrical signal; and a wireless transceiver configured to receive the electrical signal from the sensor, and to transmit the electrical signal to a wireless receiver remotely located from the apparatus.
Abstract:
An ultrasound system includes a 3D imaging probe and a needle guide which attaches to the probe for guidance of needle insertion into a volumetric region which can be scanned by the 3D imaging probe. The needle guide responds to the insertion of a needle through the guide by identifying a plane for scanning by the probe which is the insertion plane through which the needle will pass during insertion. The orientation of the insertion plane is communicated to the probe to cause the probe to scan the identified plane and produce images of the needle as it travels through the insertion plane.
Abstract:
An ultrasound system includes a 3D imaging probe and a needle guide which attaches to the probe for guidance of the insertion of multiple needles into a volumetric region which can be scanned by the 3D imaging probe. The needle guide responds to the insertion of a needle through the guide by identifying a plane for scanning by the probe which is the insertion plane through which the needle will pass during insertion. The orientation of the insertion plane is communicated to the probe to cause the probe to scan the identified plane and produce images of the needle as it travels through the insertion plane.