Abstract:
The present invention relates to an electrochemical cell having a channel-type flow-electrode unit.The channel-type flow-electrode structure according to the present invention, which has at least two channel-type flow-electrode units, can significantly reduce manufacturing costs and installation space by reducing the number of parts while extending the electrode capacity to be suitable for large-scale plants for electricity generation, energy storage, desalination, etc. In addition, the channel-type flow-electrode structure can be applied not only to a capacitive flow-electrode device and/or a redox flow battery device, but also to all of the devices for electricity generation, energy storage, and desalination while moving ions or protons.
Abstract:
The present invention provides a hydrogen separation membrane module for capturing carbon dioxide. According to the present invention, a module material is used to suppress the reactivity by a carbon source in the separation membrane module during a carbon capture and storage (CCS) process, and is capable of preventing an occurrence of carbon and a decrease in hydrogen partial pressure by a side reaction.
Abstract:
The present invention relates to a thin plate bonding method or a thin plate assembly, and more particularly, to a thin plate bonding method which includes coating with a coating material after increasing a surface roughness or increasing a surface roughness through coating with a coating material, and then, conducting diffusion bonding, such that excellent bonding strength is achieved even when the diffusion bonding is performed at low temperature and low pressure, thin plate deformation by thermal stress may be prevented, and high air tightness may be obtained since the coating material fills micro-pores.