Abstract:
According to various aspects and exemplary embodiments of the present disclosure, ultra-small catalyst particles having extremely high reactivity may be synthesized in single-atom or single-molecule state. When the ultra-small-sized single-atom or single-molecule catalyst is used, the use of metal raw materials can be minimized and, at the same time, catalytic activity may be maximized through maximized reactivity of the single-atom or single-molecule catalyst.
Abstract:
Disclosed are a porous graphene member having through-holes formed therein, a method for manufacturing the porous graphene member, and an apparatus for manufacturing the porous graphene member using the method. The method comprises: introducing a carbon source and a substitution reaction source into a deposition furnace; thermally decomposing the carbon source and the substitution reaction source simultaneously to generate carbon atoms and substitution atoms, respectively, wherein the carbon atoms are deposited on a substrate present within the deposition furnace to form a graphene film consisting of a monoatomic layer structure, and during the deposition of carbon atoms, the substitution atoms not only interfere with covalent bonds between the carbon atoms to cause crystal defects, but also substitute for parts of the carbon atoms to in situ form through-holes in the graphene, thereby creating the porous graphene member; and releasing the porous graphene member from the substrate.
Abstract:
Disclosed are a large-scale composite synthesis system, a reactor therefor, and a synthesis method using the same, wherein two or more different samples are vaporized in respective vaporizers, and are then fed into a reactor that has a relatively large transverse cross-sectional diameter compared to the connector for transporting the samples in a gas phase and is maintained at a temperature lower than that of the connector, thus producing a powder composite, the composite being synthesized while being electrostatically attached to an adherend surface.
Abstract:
Disclosed herein are porous graphene filters, each consisting of a carbon monoatomic layer having small holes formed therein during the graphene formation, a plurality of the porous graphene filters being used to selectively filter a specific material from a mixture of at least two different materials, a method for manufacturing the same, and a filtering apparatus using the same. The method comprises: separately forming a first graphene filter having a first hole of a first size and a second graphene filter having a second hole of a second size, during deposition of carbon atoms generated from a carbon source for formation of graphene, by substituting the carbon atoms, in part, with a substitution atom generated from a substitution source, the second size being larger than the first size; and arranging the first graphene filter and the second graphene filter in a filter body equipped with an inlet and an outlet.
Abstract:
Disclosed are a metal-carbon hybrid composite having a nitrogen-doped carbon surface and a method of manufacturing the same. More particularly, the present invention relates to a method of manufacturing a metal-carbon hybrid composite, wherein the surface of carbon for the metal-carbon hybrid composite may be doped with nitrogen in a single step using a co-vaporization process, and to a metal-carbon hybrid composite having a nitrogen-doped carbon surface manufactured by the method.
Abstract:
The present invention relates to an electrochemical cell having a channel-type flow-electrode unit.The channel-type flow-electrode structure according to the present invention, which has at least two channel-type flow-electrode units, can significantly reduce manufacturing costs and installation space by reducing the number of parts while extending the electrode capacity to be suitable for large-scale plants for electricity generation, energy storage, desalination, etc. In addition, the channel-type flow-electrode structure can be applied not only to a capacitive flow-electrode device and/or a redox flow battery device, but also to all of the devices for electricity generation, energy storage, and desalination while moving ions or protons.