Abstract:
An exhaust gas dilution device according to an exemplary embodiment of the present invention includes a head part, ejector unit, a nozzle part, and a dilution part. The head part has a space part into which an exhaust gas flows and a through-hole formed through the center axis direction to be connected to the space part. The ejector unit is coupled to the head part and has a first discharge hole formed passing through the center axis direction to be connected to the through-hole and connected to a first inlet to which primary dilution air is supplied. The nozzle part is inserted into a first discharge hole through the through-hole and has a second discharge hole that penetrates in the center axis direction so that the exhaust gas flowed into the space part is sucked and ejected into the first discharge hole as the primary dilution air moves through the first discharge hole. The dilution part has a first flow path part into which a primary dilution gas, which is generated and discharged after the exhaust gas and the primary dilution air are mixed in the first discharge hole, flows, and a second flow path part connected to the first flow path part and guiding secondary dilution air to be mixed with the primary dilution gas, and generates a secondary dilution gas as the primary dilution gas and the secondary dilution air are mixed.
Abstract:
In a system of manufacturing an orthodontic wire, a method for manufacturing the orthodontic wire using the system, and an orthodontic wire bending machine for performing the system, the system includes a teeth data obtaining part, a simulating part, a calculating part and a wire manufacturing part. The teeth data obtaining part obtains present teeth data of a patient. The simulating part generates final teeth data. The calculating part compares a predetermined threshold to a compared value between the present teeth data of the patient and the final teeth data. The wire manufacturing part selectively manufactures a wire for an orthodontic process or a wire for a dentition maintenance process based on a compared result of the calculating part.
Abstract:
An exemplary embodiment of the present invention relates to an apparatus and method for removing nitrogen oxide from exhaust gas. The apparatus for removing nitrogen oxide from exhaust gas includes: a chamber through which exhaust gas is introduced and discharged; a nozzle injecting a solution, which reacts with the exhaust gas introduced into the chamber, into the chamber; and an electric dust collecting unit installed at a rear end of the chamber to be supplied with the exhaust gas processed in the chamber and including a discharge unit and a dust collecting unit.
Abstract:
There is provided an electrostatic precipitation device of explosive exhaust gas particles that can remove by unipolar charging a particulate material such as SiO2 that is included in an explosive exhaust gas by charging the explosive exhaust gas with an indirect charging method of charging through ions that are injected from the outside.
Abstract:
In a flexible substrate and a method for manufacturing the flexible substrate, the flexible substrate includes a polymer substrate, a through conductive material, an upper conductive material and a lower conductive material. The polymer substrate has a via-hole, and the via-hole is formed by a pattern formed via a photolithography and passes through the polymer substrate. The through conductive material fills the via-hole of the polymer substrate. The upper conductive material is planarized and is patterned to form an upper substrate of the polymer substrate in a plane with an upper substrate of the through conductive material. The lower conductive material is planarized and is patterned to form a lower substrate of the polymer substrate in a plane with a lower substrate of the through conductive material.
Abstract:
In a reactor for solid ammonium salt, a method of controlling the reactor, and a NOx emission purification system using solid ammonium salt and selective catalytic reduction, the reactor includes a first chamber and a second chamber. The first chamber has an exhaust and a first heating element. Solid ammonium salt is in the first chamber. The second chamber has a second heating element and is formed at a side of the first chamber. The first chamber is connected with the second chamber. Solid ammonium salt is in the second chamber. An amount of the solid ammonium salt in the second chamber is more than that in the first chamber, so that the first chamber is heated and cooled faster than the second chamber.
Abstract:
The apparatus for diluting exhaust gas according to an exemplary embodiment of the present invention includes a stagnant air forming unit configured to form stagnant air by decelerating a flow velocity of introduced exhaust gas, an ejector unit connected to a front end of the stagnant air forming unit and configured to discharge the exhaust gas to a front, and a dilution unit coupled to a front end of the ejector unit.
Abstract:
A vehicle air purifying apparatus is provided. The vehicle air purifying apparatus includes: a charger configured to discharge positive (+) ions or negative (−) ions to charge particles included in harmful gas; a removable collecting electrode configured to have positive (+) or negative (−) polarity to allow the particles charged by the charger to be attached thereto; and a filter configured to filter harmful gas and have positive (+) or negative (−) polarity, and the filter is formed in a tubular shape having an empty space therein and the removable collecting electrode is inserted into the filter.
Abstract:
In a reactor for solid ammonium salt, a method of controlling the reactor, and a NOx emission purification system using solid ammonium salt and selective catalytic reduction, the reactor includes a first chamber and a second chamber. The first chamber has an exhaust and a first heating element. Solid ammonium salt is in the first chamber. The second chamber has a second heating element and is formed at a side of the first chamber. The first chamber is connected with the second chamber. Solid ammonium salt is in the second chamber. An amount of the solid ammonium salt in the second chamber is more than that in the first chamber, so that the first chamber is heated and cooled faster than the second chamber.
Abstract:
In a system of manufacturing an orthodontic wire, a method for manufacturing the orthodontic wire using the system, and an orthodontic wire bending machine for performing the system, the system includes a teeth data obtaining part, a simulating part, a calculating part and a wire manufacturing part. The teeth data obtaining part obtains present teeth data of a patient. The simulating part generates final teeth data. The calculating part compares a predetermined threshold to a compared value between the present teeth data of the patient and the final teeth data. The wire manufacturing part selectively manufactures a wire for an orthodontic process or a wire for a dentition maintenance process based on a compared result of the calculating part.