Abstract:
An oscillator using spin transfer torque includes i) a pinned magnetic layer having a fixed magnetization direction, ii) a non-magnetic layer located on the pinned magnetic layer, and iii) a free magnetic layer located on the non-magnetic layer. The pinned magnetic layer includes i) a first part of the fixed magnetic layer and ii) a second part of the fixed magnetic layer located thereon. The first part of the fixed magnetic layer includes i) a first interface in contact with the second part of the fixed magnetic layer and ii) a second surface exposed to an outside while surrounding the first interface.
Abstract:
Provided is a method of a generating a skyrmion. The method includes a step of preparing a magnetic multilayer system and a step of generating a skyrmion at a temperature of 400° C. or higher by adjusting the magnetic anisotropy value and the magnetization value of the magnetic multilayer system.
Abstract:
A spin control electronic device operable at room temperature according to an embodiment of the present invention includes a transfer channel that includes a low-dimensional nanostructure, the nanostructure being located on a substrate, having an elongate shape in a first direction and having a cross section, cut along a second direction that is perpendicular to the first direction, in the shape of a triangle; a source electrode located on the substrate and intersecting the transfer channel, the source electrode covering part of the transfer channel; and a drain electrode spaced apart from the source electrode on the substrate, the drain electrode intersecting the transfer channel and covering part of the transfer channel.
Abstract:
A perpendicularly magnetized thin film structure and a method of manufacturing the perpendicularly magnetized thin film structure are provided. The perpendicularly magnetized thin film structure includes i) a base layer, ii) a magnetic layer located on the base layer and having an L10-crystalline structure, and iii) a metal oxide layer located on the magnetic layer.