Abstract:
Provided is a color-controllable thin-film solar cell including a transparent electrode layer disposed on an absorption layer, and color structure patterns disposed on at least parts of the transparent electrode layer.
Abstract:
The present disclosure relates to a Se or S based thin film solar cell and a method for fabricating the same, which may improve crystallinity and electric characteristics of an upper transparent electrode layer (6) by controlling a structure of a lower transparent electrode layer (5′) in a thin film solar cell having a Se or S based light absorption layer. In the Se or S based thin film solar cell according to the present disclosure, the front transparent electrode layer comprises a lower transparent electrode layer (5′) and an upper transparent electrode layer (6), and the lower transparent electrode layer (5′) comprises an amorphous oxide-based thin film.
Abstract:
The present invention relates to a method for planarizing a CIS-based thin film, the method including: electropolishing a CIS-based compound layer by applying current or voltage to an electrochemical cell including: a CIS-based compound layer provided on a conductive base material, as a working electrode; a counter electrode; and an electrolyte solution including a precursor of elements constituting the CIS-based compound layer, a supporting electrolyte, a complexing agent, and an additive including a hydroxy functional group.
Abstract:
The present invention relates to a colored tandem solar cell module, and more particularly, a high-efficiency thin-film colored tandem solar cell module which does not require separate photocurrent matching, implements a color without a separate color filter, and generates power with high efficiency. According to the present invention, it is possible to provide a colored tandem solar cell module including solar cells, which each include a bottom electrode having an inverse diode structure formed by sequentially stacking a first electrode, a first semiconductor layer, a second semiconductor layer, and a second electrode on a substrate, a light absorption layer formed on the bottom electrode, and a top electrode formed on the light absorption layer, thereby eliminating the need for photocurrent matching, implementing a color without a separate color filter, and improving efficiency.
Abstract:
Provided is a chalcogenide solar cell including a substrate, a transparent conducting oxide (TCO) back contact provided on the substrate, a chalcogenide light absorbing layer provided on the TCO back contact and including at least copper (Cu), gallium (Ga), and silver (Ag), and a TCO front contact provided on the chalcogenide light absorbing layer, wherein a Cu-rich region having a content of Cu higher than an average Cu content of the chalcogenide light absorbing layer is provided at an interface where the chalcogenide light absorbing layer is in contact with the TCO back contact.
Abstract:
Provided is a method of fabricating a see-through thin film solar cell, the method including preparing a substrate including a molybdenum (Mo) layer on one surface, forming see-through patterns by selectively removing at least parts of the Mo layer, sequentially depositing a chalcogenide absorber layer, a buffer layer, and a transparent electrode layer on the substrate and the Mo layer including the see-through patterns, and forming a see-through array according to a shape of the see-through patterns by removing the chalcogenide absorber layer, the buffer layer, and the transparent electrode layer deposited on the see-through patterns, by irradiating a laser beam from under the substrate toward the transparent electrode layer.
Abstract:
Provided is a chalcogenide thin film solar cell having a transparent back electrode, including a transparent substrate, a photoactive layer including an S, Se-based chalcogenide material, and a back electrode disposed between the transparent substrate and the photoactive layer and including a transparent conductive oxide containing titanium (Ti).