摘要:
Disclosed are a 5-(2,6-dioxyphenyl)tetrazole-containing polymer, a method for preparing the same, a membrane containing the same and an electrochemical device, particularly a high temperature polymer electrolyte membrane fuel cell, including the membrane. The membrane containing the 5-(2,6-dioxyphenyl)tetrazole-containing polymer is capable of providing high proton conductivity and exhibiting good mechanical properties, thereby capable of providing superior fuel cell performance. Accordingly, the membrane may be usefully used in an electrochemical device, particularly a fuel cell, more particularly a high temperature polymer electrolyte membrane fuel cell.
摘要:
A dehydrogenation reaction apparatus includes a dehydrogenation reactor having a reaction vessel that stores a chemical hydride; and a methane generator that converts carbon monoxide generated in the dehydrogenation reactor into methane.
摘要:
Provided is a composite polymer electrolyte membrane for a fuel cell, including: a porous fluorinated polymer support; and a perfluorinated sulfonic acid polymer resin membrane which fills the inside of pores of the porous fluorinated polymer support and covers an external surface of the porous fluorinated polymer support.
摘要:
Provided is a catalyst for oxygen reduction reaction comprising an alloy comprising at least one selected from Pt, Pd and Ir supported on a carbon carrier functionalized with poly(N-isopropylacrylamide) (PNIPAM). The catalyst for oxygen reduction reaction has electronic ensemble effects by virtue of the carbon carrier functionalized with poly(N-isopropylacrylamide) (PNIPAM), and thus shows improved oxygen reduction activity and durability as compared to conventional catalysts supported on carbon.
摘要:
Provided are a perfluorinated sulfonic acid polymer membrane having a porous surface layer, which includes a surface layer and a bottom layer present at the bottom of the surface layer, wherein the surface layer is a porous layer, and the bottom layer is non-porous dense layer, and a method for preparing the same through a solvent evaporation process.
摘要:
Provided are a method for preparing a Nafion membrane having a through-pore free monolithic porous structure throughout the bulk of the membrane through a one-step process very easily and a Nafion membrane having a through-pore free monolithic porous structure obtained from the method. The Nafion membrane having such a porous structure may have an increased surface area, and thus may improve the membrane/catalyst interfacial area and transport characteristics.
摘要:
A dehydrogenation reaction apparatus includes: an aqueous add solution tank that stores an aqueous acid solution; a dehydrogenation reactor that stores a chemical hydride and selectively receives the aqueous acid solution stored in the aqueous add solution tank; and a heat control device. The heat control device is disposed inside or outside the dehydrogenation reactor and controls an internal temperature of the dehydrogenation reactor.
摘要:
A dehydrogenation reaction device is disclosed. The device includes a chemical hydride storage unit including a chemical hydride storage tank, a reaction unit including an acid aqueous solution storage tank, and a dehydrogenation reactor for generating hydrogen by reacting a chemical hydride with an acid aqueous solution. The device further includes a hydrogen storage unit including a hydrogen storage tank for storing the hydrogen produced in the dehydrogenation reactor, and a recovery unit for recovering the product produced in the dehydrogenation reactor.
摘要:
A catalyst for a dehydrogenation reaction includes a carrier including Al2O3 having a theta (θ) phase, an active metal supported on the carrier and including a noble metal, and an auxiliary metal supported on the carrier and different from the active metal.
摘要:
A dehydrogenation reaction apparatus is disclosed. An embodiment of the present disclosure provides a dehydrogenation reaction apparatus, including: a dehydrogenation reactor that includes a reaction vessel configured to store a chemical hydride, and at least one partition wall partitioning an inner space of the reaction vessel into a plurality of reaction chambers; and a buffer tank configured to temporarily store hydrogen generated in the dehydrogenation reactor and then supply the hydrogen to the fuel cell.