摘要:
Provided is a group of rare-earth regenerator material particles having an average particle size of 0.01 to 3 mm, wherein the proportion of particles having a ratio of a long diameter to a short diameter of 2 or less is 90% or more by number, and the proportion of particles having a depressed portion having a length of 1/10 to ½ of a circumferential length on a particle surface is 30% or more by number. By forming the depressed portion on the surface of the regenerator material particles, it is possible to increase permeability of an operating medium gas and a contact surface area with the operating medium gas.
摘要:
A rare earth regenerator material particle and a regenerator material particle group having a high long-term reliability, and a superconducting magnet, an examination apparatus, a cryopump and the like using the same are provided. A rare earth regenerator material particle contains a rare earth element as a constituent component, and in the particle, a peak indicating a carbon component is detected in a surface region by an X-ray photoelectron spectroscopy analysis.
摘要:
A ceramic ball material according to an embodiment including: a spherical portion; and a band-shaped portion formed in a band shape. When C denotes circularity of the band-shaped portion as observed from a height direction thereof, the circularity C is in a range of more than 0% and 2.5% or more.
摘要:
The present invention provides a rare earth cold accumulating material particle comprising a rare earth oxide or a rare earth oxysulfide, wherein the rare earth cold accumulating material particle is composed of a sintered body; an average crystal grain size of the sintered body is 0.5 to 5 μm; a porosity of the sintered body is 10 to 50 vol. %; and an average pore size of the sintered body is 0.3 to 3 μm. Further, it is preferable that the porosity of the rare earth cold accumulating material particle is 20 to 45 vol. %, and a maximum pore size of the rare earth cold accumulating material particle is 4 μm or less. Due to this structure, there can be provided a rare earth cold accumulating material having a high refrigerating capacity and a high strength.
摘要:
The present invention provides a rare earth cold accumulating material particle comprising a rare earth oxide or a rare earth oxysulfide, wherein the rare earth cold accumulating material particle is composed of a sintered body; an average crystal grain size of the sintered body is 0.5 to 5 μm; a porosity of the sintered body is 10 to 50 vol. %; and an average pore size of the sintered body is 0.3 to 3 μm. Further, it is preferable that the porosity of the rare earth cold accumulating material particle is 20 to 45 vol. %, and a maximum pore size of the rare earth cold accumulating material particle is 4 μm or less. Due to this structure, there can be provided a rare earth cold accumulating material having a high refrigerating capacity and a high strength.
摘要:
Provided is a group of rare-earth regenerator material particles having an average particle size of 0.01 to 3 mm, wherein the proportion of particles having a ratio of a long diameter to a short diameter of 2 or less is 90% or more by number, and the proportion of particles having a depressed portion having a length of 1/10 to ½ of a circumferential length on a particle surface is 30% or more by number. By forming the depressed portion on the surface of the regenerator material particles, it is possible to increase permeability of an operating medium gas and a contact surface area with the operating medium gas.
摘要:
The present invention provides a rare earth cold accumulating material particle comprising a rare earth oxide or a rare earth oxysulfide, wherein the rare earth cold accumulating material particle is composed of a sintered body; an average crystal grain size of the sintered body is 0.5 to 5 μm; a porosity of the sintered body is 10 to 50 vol. %; and an average pore size of the sintered body is 0.3 to 3 μm. Further, it is preferable that the porosity of the rare earth cold accumulating material particle is 20 to 45 vol. %, and a maximum pore size of the rare earth cold accumulating material particle is 4 μm or less. Due to this structure, there can be provided a rare earth cold accumulating material having a high refrigerating capacity and a high strength.
摘要:
Provided is a group of rare-earth regenerator material particles having an average particle size of 0.01 to 3 mm, wherein the proportion of particles having a ratio of a long diameter to a short diameter of 2 or less is 90% or more by number, and the proportion of particles having a depressed portion having a length of 1/10 to ½ of a circumferential length on a particle surface is 30% or more by number. By forming the depressed portion on the surface of the regenerator material particles, it is possible to increase permeability of an operating medium gas and a contact surface area with the operating medium gas.
摘要:
A ceramic ball storage tray includes a storage portion that stores a ceramic ball. The storage portion of the ceramic ball storage tray has a protruding portion formed such that a center of a bottom surface portion of the storage portion is hollow. A height of an outer circumferential surface of the protruding portion relative to a diameter of the ceramic ball is within a range of 0.05 or more and 0.30 or less. A height of the storage portion relative to the diameter of the ceramic ball is preferably within a range of 1.05 or more and 2.00 or less. A height of an inner circumferential surface of the protruding portion relative to the diameter of the ceramic ball is preferably within a range of 0.01 or more and 0.10 or less.
摘要:
An antenna core includes a laminate of a plurality of Co-based amorphous magnetic alloy thin strips in which a length ratio of a long axis to a short axis is greater than 1. 60% or more of the Co-based amorphous magnetic alloy thin strips in terms of the number of the thin strips as percentage have a line-shaped mark formed along the long axis on at least one surface thereof. An antenna includes the antenna core and a winding wound around the antenna core along the long axis.