摘要:
An apparatus and methods for spectroscopic detection of tissue abnormality, particularly precancerous cervical tissue, using neural networks to analyze in vivo measurements of fluorescence spectra. The invention excites fluorescence intensity spectra in both normal and abnormal tissue. This fluorescence spectroscopy data is used to train a group (ensemble) of neural networks, preferably radial basis function (RBF) neural networks. Once trained, fluorescence spectroscopy data from unknown tissue samples is classified by the trained neural networks. This process is used to differentiate pre-cancers from normal tissues, and can also be used to differentiate high grade pre-cancers from low grade pre-cancers. One embodiment of the invention is able to distinguish pre-cancerous tissue from both normal squamous tissue (NS) and normal columnar (NC) tissue in a single-stage of analysis. The invention demonstrates significantly smaller variability in classification accuracy, resulting in more reliable classification, with superior sensitivity. Moreover, the single-stage embodiment of the invention simplifies the decision-making process as compared to a two-stage embodiment.
摘要:
Fluorescence spectral data acquired from tissues in vivo or in vitro is processed in accordance with a multivariate statistical method to achieve the ability to probabilistically classify tissue in a diagnostically useful manner, such as by histopathological classification. The apparatus includes a controllable illumination device for emitting electromagnetic radiation selected to cause tissue to produce a fluorescence intensity spectrum. Also included are an optical system for applying the plurality of radiation wavelengths to a tissue sample, and a fluorescence intensity spectrum detecting device for detecting an intensity of fluorescence spectra emitted by the sample as a result of illumination by the controllable illumination device. The system also include a data processor, connected to the detecting device, for analyzing detected fluorescence spectra to calculate a probability that the sample belongs in a particular classification. The data processor analyzes the detected fluorescence spectra using a multivariate statistical method. The five primary steps involved in the multivariate statistical method are (i) preprocessing of spectral data from each patient to account for inter-patient variation, (ii) partitioning of the preprocessed spectral data from all patients into calibration and prediction sets, (iii) dimension reduction of the preprocessed spectra in the calibration set using principal component analysis, (iv) selection of the diagnostically most useful principal components using a two-sided unpaired student's t-test and (v) development of an optimal classification scheme based on logistic discrimination using the diagnostically useful principal component scores of the calibration set as inputs.
摘要:
The present invention involves the use of fluorescence spectroscopy in the diagnosis of cervical cancer and precancer. Using multiple illumination wavelengths, it is possible to (i) differentiate normal or inflamed tissue from squamous intraepithelial lesions (SILs) and (ii) to differentiate high grade SILs from non-high grade SILs. The detection may be performed in vitro or in vivo. Multivariate statistical analysis was employed to reduce the number of fluorescence excitation-emission wavelength pairs needed to re-develop algorithms that demonstrate a minimum decrease in classification accuracy. Fluorescence at excitation-emission wavelength pairs was used to redevelop and test screening and diagnostic algorithms that have a similar classification accuracy to those that employ fluorescence emission spectra at three excitation wavelengths. Both the full-parameter and reduced-parameter screening algorithms discriminate between SILs and non-SILs with a similar specificity and a substantially improved sensitivity relative to Pap smear screening and differentiate high grade SILs from non-high grade SILs.
摘要:
A method and apparatus for detecting tissue abnormality, particularly precancerous cervical tissue, through fluorescence or Raman spectroscopy, or a combination of fluorescence and Raman spectroscopy. In vivo fluorescence measurements were followed by in vitro NIR Raman measurements on human cervical biopsies. Fluorescence spectra collected at 337, 380 and 460 nm excitation were used to develop a diagnostic method to differentiate between normal and dysplastic tissues. Using a fluorescence diagnostic method, a sensitivity and specificity of 80% and 67% were observed for differentiating squamous intraepithelial lesions (SILs) from all other tissues. In accordance with another aspect of the invention, using Raman scattering peaks observed at selected wavenumbers, SILs were separated from other tissues with a sensitivity and specificity of 88% and 100%. In addition, inflammation and metaplasia samples are correctly separated from the SILs.
摘要:
Early diagnosis of cervical precancer is an important clinical goal. Optical spectroscopy has been suggested as a new technique to overcome limitations of current clinical practice. Herein, NIR Raman spectroscopy is applied to the diagnosis of cervical precancers. Using algorithms based on empirically selected peak intensities, ratios of peak intensities and a combination of Principal Component Analysis (PCA) for data reduction and Fisher Discriminant Analysis (FDA), normal tissues, inflammation and metaplasia were distinguishable from low grade and high grade precancers. The primary contributors to the tissue spectra appear to be collagen, nucleic acids, phospholipids and glucose 1-phosphate. These results suggest that near infrared Raman spectroscopy can be used effectively for cervical precancer diagnosis.
摘要:
A method and apparatus for detecting tissue abnormality, particularly precancerous cervical tissue, through fluorescence or Raman spectroscopy, or a combination of fluorescence and Raman spectroscopy. In vivo fluorescence measurements were followed by in vitro NIR Raman measurements on human cervical biopsies. Fluorescence spectra collected at 337, 380 and 460 nm excitation were used to develop a diagnostic method to differentiate between normal and dysplastic tissues. Using a fluorescence diagnostic method, a sensitivity and specificity of 80% and 67% were observed for differentiating squamous intraepithelial lesions (SILs) from all other tissues. In accordance with another aspect of the invention, using Raman scattering peaks observed at selected wavenumbers, SILs were separated from other tissues with a sensitivity and specificity of 88% and 100%. In addition, inflammation and metaplasia samples are correctly separated from the SILs.
摘要:
Systems and methods for spectral analysis of a tissue mass using an instrument, an optical probe, and a Monte Carlo algorithm or a diffusion algorithm are provided. According to one method, an instrument is inserted into a tissue mass. A fiber optic probe is applied via the instrument into the tissue mass. Turbid spectral data of the tissue mass is measured using the fiber probe. The turbid spectral data is converted to absorption, scattering, and/or intrinsic fluorescence spectral data via a Monte Carlo algorithm or diffusion algorithm. Biomarker concentrations in the tissue mass are quantified using the absorption, scattering, and/or intrinsic fluorescence spectral data.
摘要:
The subject matter described herein includes an optical assay system for intraoperative assessment of tumor margins. According to one aspect, the subject matter described herein includes a biological sample containment and illumination apparatus for holding a biological sample for illumination by a plurality of electromagnetic radiation probes. The biological sample containment and illumination apparatus includes a plurality of frame members positioned with respect to each other to form an interior space for receiving a biological sample. At least one of the plurality of frame members includes a plurality of probe receiving locations for receiving a plurality of electromagnetic radiation probes. The probe receiving locations position the probes with respect to the biological sample to allow illumination of plural locations of the biological sample by the probes.
摘要:
The subject matter described herein includes an optical assay system for intraoperative assessment of tumor margins. According to one aspect, the subject matter described herein includes a biological sample containment and illumination apparatus for holding a biological sample for illumination by a plurality of electromagnetic radiation probes. The biological sample containment and illumination apparatus includes a plurality of frame members positioned with respect to each other to form an interior space for receiving a biological sample. At least one of the plurality of frame members includes a plurality of probe receiving locations for receiving a plurality of electromagnetic radiation probes. The probe receiving locations position the probes with respect to the biological sample to allow illumination of plural locations of the biological sample by the probes.
摘要:
A needle biopsy includes the step of inserting an optical spectroscopy probe in the needle and gathering optical information through a window formed in the side of the needle at its distal end. The optical probe includes an illumination optical fiber which conveys light to the tissues adjacent the side window and a detection optical fiber which collects light from the same tissues and conveys it to an optical spectroscopy instrument. Based on the results of the optical spectroscopy measurement, the optical probe may be withdrawn from the needle and a cutter advanced to acquire a sample of the tissues adjacent the side window.