Abstract:
A process and system are described for the processing of gas associated with crude oil production, i.e. associated gas. A separation complex is used to separate produced fluids produced from a hydrocarbon reservoir into crude oil, liquefied petroleum gas, water, and natural gas. At least a portion of the natural gas is converted into synthesis gas in a synthesis gas generator. A combination of a synthesis gas conversion catalysts and hydroconversion catalysts are used in a synthesis gas reactor to convert the synthesis gas into a liquid effluent stream containing liquefied petroleum gas and a synthetic crude oil. The liquefied petroleum gas and synthetic crude oil from the synthesis gas reactor is sent to the separation complex. Liquefied petroleum gas is separated both from the synthetic crude oil and a natural crude oil obtained from the produced fluids. The system and process permits synthetic crude oil to be blended with the natural crude oil producing a blended stabilized crude oil having 2 wt % or more of the synthetic crude oil and with a pour point of 60° C. or less. Use of a common facility for separation operations on the natural crude oil and synthetic crude oil thus reduces capital costs and allows converted associated gases to be shipped with the natural crude oil on a conventional crude oil tanker.
Abstract:
A process and system are described for the processing of gas associated with crude oil production, i.e. associated gas. A separation complex is used to separate produced fluids produced from a hydrocarbon reservoir into crude oil, liquefied petroleum gas, water, and natural gas. At least a portion of the natural gas is converted into synthesis gas in a synthesis gas generator. A combination of a synthesis gas conversion catalysts and hydroconversion catalysts are used in a synthesis gas reactor to convert the synthesis gas into a liquid effluent stream containing liquefied petroleum gas and a synthetic crude oil. The liquefied petroleum gas and synthetic crude oil from the synthesis gas reactor is sent to the separation complex. Liquefied petroleum gas is separated both from the synthetic crude oil and a natural crude oil obtained from the produced fluids. The system and process permits synthetic crude oil to be blended with the natural crude oil producing a blended stabilized crude oil having 2 wt % or more of the synthetic crude oil and with a pour point of 60° C. or less. Use of a common facility for separation operations on the natural crude oil and synthetic crude oil thus reduces capital costs and allows converted associated gases to be shipped with the natural crude oil on a conventional crude oil tanker.
Abstract:
Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt and ZSM-48 zeolite. The hybrid Fischer-Tropsch catalysts can contain cobalt deposited on ZSM-48 extrudate supports. Alternatively, the Fischer-Tropsch catalysts can contain cobalt deposited on supports mixed with ZSM-48 particles. It has surprisingly been found that the use of hybrid Fischer-Tropsch catalysts containing ZSM-48 zeolite in synthesis gas conversion reactions results in improved C5+ productivity and catalyst activity, as well as a desirable product distribution including low formation of methane and C21+.
Abstract:
Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt deposited on hybrid supports. The hybrid supports contain an acidic zeolite component and a silica-containing material. It has been found that the use of the hybrid Fischer-Tropsch catalysts in synthesis gas conversion reactions results in high C5+ productivity, high CO conversion rates and low olefin formation.
Abstract:
Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt deposited on hybrid supports. The hybrid supports contain an acidic zeolite component and a silica-containing material. It has been found that the use of the hybrid Fischer-Tropsch catalysts in synthesis gas conversion reactions results in high C5+ productivity, high CO conversion rates and low olefin formation.
Abstract:
A method for forming a catalyst for synthesis gas conversion and a synthesis gas conversion process impregnating a zeolite support wherein the catalyst contains ruthenium on a zeolite support, such as ZSM-5, ZSM-12, SSZ-32 or beta zeolite, and the product stream has less than 1 weight % C21+.
Abstract:
Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt deposited on hybrid supports. The hybrid supports contain an acidic zeolite component and a silica-containing material. It has been found that the use of the hybrid Fischer-Tropsch catalysts in synthesis gas conversion reactions results in high C5+ productivity, high CO conversion rates and low olefin formation.
Abstract:
Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt and ZSM-48 zeolite. The hybrid Fischer-Tropsch catalysts can contain cobalt deposited on ZSM-48 extrudate supports. Alternatively, the Fischer-Tropsch catalysts can contain cobalt deposited on supports mixed with ZSM-48 particles. It has surprisingly been found that the use of hybrid Fischer-Tropsch catalysts containing ZSM-48 zeolite in synthesis gas conversion reactions results in improved C5+ productivity and catalyst activity, as well as a desirable product distribution including low formation of methane and C21+.
Abstract:
Methods for preparing integral synthesis gas conversion catalyst extrudates including an oxide of a Fischer-Tropsch (FT) metal component and a zeolite component are disclosed. The oxide of the FT metal component is precipitated from a solution into crystallites having a particle size between about 2 nm and about 30 nm. The oxide of the FT metal component is combined with a zeolite powder and a binder material, and the combination is extruded to form integral catalyst extrudates. The oxide of the FT metal component in the resulting catalyst is in the form of reduced crystallites located outside the zeolite channels. No appreciable ion exchange of FT metal occurs within the zeolite channels. The acid site density of the integral catalyst extrudate is at least about 80% of the zeolite acid site density.
Abstract:
Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt deposited on hybrid supports. The hybrid supports contain an acidic zeolite component and a silica-containing material. It has been found that the use of the hybrid Fischer-Tropsch catalysts in synthesis gas conversion reactions results in high C5+ productivity, high CO conversion rates and low olefin formation.