摘要:
Disclosed is a versatile method to produce superhydrophobic surfaces by combining electrospinning and initiated chemical vapor deposition (iCVD). A wide variety of surfaces, including electrospun polyester fibers, may be coated by the inventive method. In one embodiment, poly(caprolactone) (PCL) was electrospun and then coated by iCVD with a thin layer of hydrophobic polymerized perfluoroalkyl ethyl methacrylate (PPFEMA). In certain embodiments said coated surfaces exhibit water contact angles of above 150 degrees, oleophobicities of at least Grade-8 and sliding angles of less than 12 degrees (for a water droplet of about 20 mg).
摘要:
The present invention relates to fibers exhibiting a water contact angle of above 150° and water contact angle hysteresis of below 15°, methods of producing the same, and applications thereof. The present invention further relates to superhydrophobic fiber mats, methods of producing the same, and applications thereof.
摘要:
The present invention provides an all-aqueous process and composition for production of silk biomaterials, e.g., fibers, films, foams and mats. In the process, at least one biocompatible polymer, such as poly(ethylene oxide) (PEO) (a well-documented biocompatible material), was blended with the silk protein prior to processing e.g., electrospinning. We discovered that this step avoids problems associated with conformational transitions of fibroin during solubilization and reprocessing from aqueous solution which lead to embrittled materials. Moreover, the process avoids the use of organic solvents that can pose problems when the processed biomaterials are exposed to cells in vitro or in vivo.
摘要:
The present invention provides an all-aqueous process and composition for production of silk biomaterials, e.g., fibers, films, foams and mats. In the process, at least one biocompatible polymer, such as poly(ethylene oxide) (PEO) (a well-documented biocompatible material), was blended with the silk protein prior to processing e.g., electrospinning. We discovered that this step avoids problems associated with conformational transitions of fibroin during solubilization and reprocessing from aqueous solution which lead to embrittled materials. Moreover, the process avoids the use of organic solvents that can pose problems when the processed biomaterials are exposed to cells in vitro or in vivo.
摘要:
The present invention provides an all-aqueous process and composition for production of silk biomaterials, e.g., fibers, films, foams and mats. In the process, at least one biocompatible polymer, such as poly(ethylene oxide) (PEO) (a well-documented biocompatible material), was blended with the silk protein prior to processing e.g., electrospinning. We discovered that this step avoids problems associated with conformational transitions of fibroin during solubilization and reprocessing from aqueous solution which lead to embrittled materials. Moreover, the process avoids the use of organic solvents that can pose problems when the processed biomaterials are exposed to cells in vitro or in vivo.
摘要:
Electrospinning of materials that are difficult or impossible to process into nanofibers by conventional fiber-forming techniques or by electrospinning are prepared by an electrospinning procedure which uses an electrospinnable outer “shell” fluid around an inner “core” fluid, which may or may not be electrospinnable, to form nanofibers of the inner core fluid having a core/shell morphology. The resulting shell around the nanofiber can remain in place or be removed during post-processing with the core of the fiber remaining intact. The dual-fluid electrospinning process can produce core fibers having diameters less than 100 nm, insulated nanowires, as well as tough, bio-compatible silk fibers. Alternatively, the core can be removed leaving a hollow fiber of the shell fluid.
摘要:
The present invention provides an all-aqueous process and composition for production of silk biomaterials, e.g., fibers, films, foams and mats. In the process, at least one biocompatible polymer, such as poly(ethylene oxide) (PEO) (a well-documented biocompatible material), was blended with the silk protein prior to processing e.g., electrospinning. We discovered that this step avoids problems associated with conformational transitions of fibroin during solubilization and reprocessing from aqueous solution which lead to embrittled materials. Moreover, the process avoids the use of organic solvents that can pose problems when the processed biomaterials are exposed to cells in vitro or in vivo.
摘要:
The present invention relates to magnetic field-responsive fibers, which comprise magnetite particles and a polymeric matrix. The invention also provides methods of producing the same, in particular via electrospinning of a stably dispersed or monodispersed polymer solution, either aqueous or organic, comprising the magnetite particles, and applications thereof.