摘要:
A thin-film transistor includes a gate electrode having a first gate electrode edge and a second gate electrode edge opposite the first gate electrode edge. The TFT also includes a drain electrode having a first drain electrode edge that overlaps the first gate electrode edge, and a second drain electrode edge that overlaps the second gate electrode edge. A method for fabricating a diode array for use in a display includes deposition of a conductive layer adjacent to a substrate, deposition of a doped semiconductor layer adjacent to the substrate, and deposition of an undoped semiconductor layer adjacent to the substrate. A display pixel unit provides reduced capacitative coupling between a pixel electrode and a source line. The unit includes a transistor, the pixel electrode, and the source line. The source line includes an extension that provides a source for the transistor. A patterned conductive portion is disposed adjacent to the source line. Another display pixel unit provides reduced pixel electrode voltage shifts. The unit includes a transistor, a pixel electrode, a source line and a balance line. The invention also provides a driver for driving a display provided with such a balance line.
摘要:
Electrophoretic display units (1) comprising pixels (11) situated between common electrodes (6) and pixel electrodes (5) need, for shortening the total image update times, increased driving voltages across the pixels (11) which endanger transistors (12) coupled to the pixel electrodes (5). These increased driving voltage (V6) to the common electrode (6). To protect the transistors (12) against these increased driving voltages, a setting signal (S1, S2) is supplied to the pixel electrode (5) via the transistor (12) for reducing a voltage across the pixel (11) resulting from a transition in the alternating voltage signal (V6). During driving frame periods (Fd) data pulses (D1, D2, D3, D4, D5, D6) are supplied, and during setting frame periods (Fs), the setting signals (S1, S2) are supplied.
摘要:
A bistable electro-optic display has a plurality of pixels, each of which is capable of displaying at least three gray levels. The display is driven by a method comprising: storing a look-up table containing data representing the impulses necessary to convert an initial gray level to a final gray level; storing data representing at least an initial state of each pixel of the display; receiving an input signal representing a desired final state of at least one pixel of the display; and generating an output signal representing the impulse necessary to convert the initial state of said one pixel to the desired final state thereof, as determined from said look-up table. The invention also provides a method for reducing the remnant voltage of an electro-optic display.
摘要:
A method for addressing a bistable electro-optic display having at least one pixel comprises applying an addressing pulse to drive the pixel to a first optical state; leaving the pixel undriven for a period of time, thereby permitting the pixel to assume a second optical state different from the first optical state; and applying to the pixel a refresh pulse which substantially restores the pixel to the first optical state, the refresh pulse being short relative to the addressing pulse.
摘要:
An electro-optic display, having at least one pixel capable of achieving any one of at least four different gray levels including two extreme optical states, is driven by displaying a first image on the display, and rewriting the display to display a second image thereon, wherein, during the rewriting of the display, any pixel which has undergone a number of transitions exceeding a predetermined value without touching an extreme optical state, is driven to at least one extreme optical state before driving that pixel to its final optical state in the second image.
摘要:
An electro-optic display comprises a layer (130) of a solid electro-optic material, at least one electrode disposed adjacent the layer (130) of electro-optic material, and a layer (180) of a lamination adhesive interposed between the layer (130) of electro-optic material and the electrode, the lamination adhesive (180) having a higher electrical conductivity in a direction perpendicular to the layer of lamination adhesive than in the plane of the layer.
摘要:
An electro-optic display is driven using a plurality of different drive schemes. The waveforms of the drive schemes are chosen such that the absolute value of the net impulse applied to a pixel for all homogeneous and heterogeneous irreducible loops divided by the number of transitions in the loop is less than about 20 percent of the characteristic impulse (i.e., the average of the absolute values of the impulses required to drive a pixel between its two extreme optical states).
摘要:
A gray scale bistable electro-optic display is driven by storing a look-up table containing data representing the impulses necessary for transitions, storing data representing at least an initial state of each pixel of the display, storing data representing temporal and gray level prior states of each pixel, receiving an input signal representing a desired final state of at least one pixel of the display; and generating an output signal representing the impulse necessary for a transition, as determined from the look-up table, dependent upon the temporal and gray level prior states. Other similar methods for driving such displays are also disclosed.
摘要:
A dielectrophoretic display has a substrate having walls defining a cavity, the cavity having a viewing surface and a side wall inclined to the viewing surface. A fluid is contained within the cavity; and a plurality of particles are present in the fluid. There is applied to the substrate an electric field effective to cause dielectrophoretic movement of the particles so that the particles occupy only a minor proportion of the viewing surface.
摘要:
Edge effects in electro-optic displays are reduced by (a) ensuring that during rewriting of the display, the last period of non-zero voltage applied all pixels terminates at substantially the same time; and (b) scanning the display at a scan rate of at least 50 Hz.