摘要:
A method and an eFuse circuit for implementing with enhanced eFuse blow operation without requiring a separate high current and high voltage supply to blow the eFuse, and a design structure on which the subject circuit resides are provided. The eFuse circuit includes an eFuse connected to a field effect transistor (FET) operatively controlled during a sense mode and a blow mode for sensing and blowing the eFuse. The eFuse circuit is placed over an independently voltage controlled silicon region. During a sense mode, the independently voltage controlled silicon region is grounded providing an increased threshold voltage of the FET. During a blow mode, the independently voltage controlled silicon region is charged to a voltage supply potential. The threshold voltage of the FET is reduced by the charged independently voltage controlled silicon region for providing enhanced FET blow function.
摘要:
A method and structures are provided for implementing vertical transistors utilizing wire vias as gate nodes. The vertical transistors are high performance transistors fabricated up in the stack between the planes of the global signal routing wire, for example, used as vertical signal repeater transistors. An existing via or a supplemental vertical via between wire planes provides both an electrical connection and the gate node of the novel vertical transistor.
摘要:
A semiconductor chip has an independently voltage controlled silicon region that is a circuit element useful for controlling capacitor values of eDRAM trench capacitors and threshold voltages of field effect transistors overlying the independently voltage controlled silicon region. A bottom, or floor, of the independently voltage controlled silicon region is a deep implant of opposite doping to a doping of a substrate of the independently voltage controlled silicon region. A top, or ceiling, of the independently voltage controlled silicon region is a buried oxide implant in the substrate. Sides of the independently voltage controlled silicon region are deep trench isolation. Voltage of the independently voltage controlled silicon region is applied through a contact structure formed through the buried oxide.
摘要:
A semiconductor chip has an embedded dynamic random access memory (eDRAM) in an independently voltage controlled silicon region that is a circuit element useful for controlling capacitor values of eDRAM deep trench capacitors and threshold voltages of field effect transistors overlying the independently voltage controlled silicon region. Retention time and performance of the eDRAM is controlled by applying a voltage to the independently voltage controlled silicon region.
摘要:
A semiconductor device has a FinFET with at least two independently controllable FETs on a single fin. The fin may have a body area with a width between two vertical sides, each side has a single FET. The fin also may have a top fin area that is wider than the body area and is electrically independent from the two FETs. The top fin area may be capable of receiving a body contact structure which may be connected to an electrical conductor as to regulate the voltage in the body area of the fin.
摘要:
A semiconductor chip has a FinFET structure with three independently controllable FETs on a single fin. The three FETs are connected in parallel so that current will flow between a common source and a common drain if one or more of the three independently controllable FETs is turned on. The three independently controllable FETs may be used in logic gates.
摘要:
A method and an eFuse circuit for implementing with enhanced eFuse blow operation without requiring a separate high current and high voltage supply to blow the eFuse, and a design structure on which the subject circuit resides are provided. The eFuse circuit includes an eFuse connected to a field effect transistor (FET) operatively controlled during a sense mode and a blow mode for sensing and blowing the eFuse. The eFuse circuit is placed over an independently voltage controlled silicon region. During a sense mode, the independently voltage controlled silicon region is grounded providing an increased threshold voltage of the FET. During a blow mode, the independently voltage controlled silicon region is charged to a voltage supply potential. The threshold voltage of the FET is reduced by the charged independently voltage controlled silicon region for providing enhanced FET blow function.
摘要:
A semiconductor chip has self aligned (where a gate electrode and associated spacers define the source/drain implant with respect to the gate electrode) Field Effect Transistors (FETs) in a back end of the line (BEOL) portion of the semiconductor chip. The FETs are used to make buffer circuits in the BEOL to improve delay and signal integrity of long signal paths on the semiconductor chip.
摘要:
A semiconductor chip has an independently voltage controlled silicon region that is a circuit element useful for controlling capacitor values of eDRAM trench capacitors and threshold voltages of field effect transistors overlying the independently voltage controlled silicon region. A bottom, or floor, of the independently voltage controlled silicon region is a deep implant of opposite doping to a doping of a substrate of the independently voltage controlled silicon region. A top, or ceiling, of the independently voltage controlled silicon region is a buried oxide implant in the substrate. Sides of the independently voltage controlled silicon region are deep trench isolation. Voltage of the independently voltage controlled silicon region is applied through a contact structure formed through the buried oxide.
摘要:
A semiconductor chip has self aligned (where a gate electrode and associated spacers define the source/drain implant with respect to the gate electrode) Field Effect Transistors (FETs) in a back end of the line (BEOL) portion of the semiconductor chip. The FETs are used to make buffer circuits in the BEOL to improve delay and signal integrity of long signal paths on the semiconductor chip.