摘要:
A structure for reducing electromigration cracking and extrusion effects in semiconductor devices includes a first metal line formed in a first dielectric layer; a cap layer formed over the first metal line and first dielectric layer; a second dielectric layer formed over the cap layer; and a void formed in the second dielectric layer, stopping on the cap layer, wherein the void is located in a manner so as to isolate structural damage due to electromigration effects of the first metal line, the effects including one or more of extrusions of metal material from the first metal line and cracks from delamination of the cap layer with respect to the first dielectric layer.
摘要:
A structure for reducing electromigration cracking and extrusion effects in semiconductor devices includes a first metal line formed in a first dielectric layer; a cap layer formed over the first metal line and first dielectric layer; a second dielectric layer formed over the cap layer; and a void formed in the second dielectric layer, stopping on the cap layer, wherein the void is located in a manner so as to isolate structural damage due to electromigration effects of the first metal line, the effects including one or more of extrusions of metal material from the first metal line and cracks from delamination of the cap layer with respect to the first dielectric layer.
摘要:
A structure for reducing electromigration cracking and extrusion effects in semiconductor devices includes a first metal line formed in a first dielectric layer; a cap layer formed over the first metal line and first dielectric layer; a second dielectric layer formed over the cap layer; and a void formed in the second dielectric layer, stopping on the cap layer, wherein the void is located in a manner so as to isolate structural damage due to electromigration effects of the first metal line, the effects including one or more of extrusions of metal material from the first metal line and cracks from delamination of the cap layer with respect to the first dielectric layer.
摘要:
A structure for reducing electromigration cracking and extrusion effects in semiconductor devices includes a first metal line formed in a first dielectric layer; a cap layer formed over the first metal line and first dielectric layer; a second dielectric layer formed over the cap layer; and a void formed in the second dielectric layer, stopping on the cap layer, wherein the void is located in a manner so as to isolate structural damage due to electromigration effects of the first metal line, the effects including one or more of extrusions of metal material from the first metal line and cracks from delamination of the cap layer with respect to the first dielectric layer.
摘要:
Recrystallization and grain growth of metal, such as Cu, is achieved at higher anneal temperatures of 150° C. to 400° C., for example, for short anneal times of five to sixty minutes by forming a metal stress locking layer on the Cu before anneal and chemical-mechanical polishing. The stress locking layer extends the elastic region of the Cu by suppressing atom diffusion to the free surface, resulting in near zero tensile stress at room temperature after anneal. Stress voiding, which creates reliability problems, is thereby avoided. Improved grain size and texture are also achieved. The stress locking layer is removed after anneal by chemical-mechanical polishing leaving the Cu interconnect with low stress and improved grain size and texture.
摘要:
Semiconductor wiring structures including a dielectric layer having a metal wiring line therein, a via extending downwardly from the metal wiring line, a metal cap layer over the metal wiring line, and a local dielectric cap positioned within a portion of the metal cap layer and in contact with the metal wiring line and a related method are disclosed. The local dielectric cap represents an intentionally created weak point in the metal wiring line of a dual-damascene interconnect, which induces electromigration (EM) voiding in the line, rather than at the bottom of a via extending downwardly from the metal wiring line. Since the critical void size in line fails, especially with metal cap layer (liner) redundancy, is much larger than that in via fails, the EM lifetime can be significantly increased.
摘要:
Recrystallization and grain growth of metal, such as Cu, is achieved at higher anneal temperatures of 150° C. to 400° C., for example, for short anneal times of five to sixty minutes by forming a metal stress locking layer on the Cu before anneal and chemical-mechanical polishing. The stress locking layer extends the elastic region of the Cu by suppressing atom diffusion to the free surface, resulting in near zero tensile stress at room temperature after anneal. Stress voiding, which creates reliability problems, is thereby avoided. Improved grain size and texture are also achieved. The stress locking layer is removed after anneal by chemical-mechanical polishing leaving the Cu interconnect with low stress and improved grain size and texture.
摘要:
Semiconductor wiring structures including a dielectric layer having a metal wiring line therein, a via extending downwardly from the metal wiring line, a metal cap layer over the metal wiring line, and a local dielectric cap positioned within a portion of the metal cap layer and in contact with the metal wiring line and a related method are disclosed. The local dielectric cap represents an intentionally created weak point in the metal wiring line of a dual-damascene interconnect, which induces electromigration (EM) voiding in the line, rather than at the bottom of a via extending downwardly from the metal wiring line. Since the critical void size in line fails, especially with metal cap layer (liner) redundancy, is much larger than that in via fails, the EM lifetime can be significantly increased.
摘要:
An integrated circuit (IC) interconnect structure that includes a first via positioned in a dielectric and coupled to a high current device at one end, and a buffer metal segment positioned in a dielectric and coupled to the first via at an opposite end thereof. The buffer metal segment includes a plurality of electrically insulating inter-dielectric (ILD) pads forming an ILD cheesing pattern thereon, to direct current. The IC interconnect structure further includes a second via positioned in a dielectric formed over the buffer metal segment and coupled to the buffer metal segment at one end and a metal power line formed in a dielectric and coupled to the second via at an opposite end thereof. The use of the ILD pads on the buffer metal segment enables a more even distribution of current along the metal power line.
摘要:
The present invention relates generally to a method of enclosing a via in a dual damascene process. In one embodiment of the disclosed method, the via is etched first and a first barrier metal or liner is deposited in the via, the trench is then etched and a second barrier metal or liner is deposited in the trench, and finally the via and trench are filled or metallized in a dual damascene process, thereby forming a via or interconnect and a line. Alternatively, the trench may be etched first and a first barrier metal or liner deposited in the trench, then the via is etched and a second barrier metal or liner is deposited in the via, and finally the trench and via are filled or metallized in a dual damascene process. The barrier metal or liner encloses the via, thereby reducing void formation due to electromigration.