摘要:
A transparent protective layer (106) having a thickness of 100 μm is formed of a resin film (100), a boundary layer (104) and an adhesive layer (103) on a signal recording layer (102). When nf, ni and na are the indices of refraction of the resin film (100), the boundary layer (104) and the adhesive layer (103), respectively, the relationship among nf, ni, and na satisfies any one of the following equation: na ni≧nf; na nf≧ni, and the relationship among nf, ni, and na satisfies the following equation |nf−ni|
摘要:
A transparent protective layer (106) having a thickness of 100 μm is formed of a resin film (100), a boundary layer (104) and an adhesive layer (103) on a signal recording layer (102). When nf, ni and na are the indices of refraction of the resin film (100), the boundary layer (104) and the adhesive layer (103), respectively, the relationship among nf, ni, and na satisfies any one of the following equation: na ni≧nf; na nf≧ni, and the relationship among nf, ni, and na satisfies the following equation |nf−ni|
摘要:
A high-definition and high-precision optical disc medium suitable for high density includes a recording layer which has an inner peripheral region extending radially outwardly from a central bore to a signal start boundary and a signal region extending radially outwardly from the signal start boundary. A light transmitting layer is disposed on the recording layer and the signal region of one face of the recording layer adjacent to the light transmitting layer occupies a laser beam incident face such that either reproduction or recording and reproduction of information is performed from the recording layer via the light transmitting layer. The inner peripheral region of the face of the recording layer is formed flat and a recess is formed, on one face of the optical disc medium opposite to the light transmitting layer, in an area corresponding to the inner peripheral region of the recording layer.
摘要:
An observation optical system includes, in order from a sample side, an infinity-corrected objective, a first lens group having a positive power, a second lens group having a positive power, and a tube lens having a positive power. An intermediate image is formed between the first lens group and the second lens group, and at a front side focal position of the second lens group. A space along an optical axis between the objective and the first lens group is configured to be changeable, and a space along an optical axis between the second lens group and the tube lens is configured to be changeable.
摘要:
A wiring substrate in which a capacitor is provided, the capacitor comprising a capacitor body including a plurality of dielectric layers and internal electrode layers provided between the different dielectric layers, wherein said capacitor body has, in at least one side face of said capacitor body, recesses extending in a thickness direction of said capacitor body from at least one of a first principal face of said capacitor body and a second principal face positioned on the side opposite to the first principal face.
摘要:
There is provided an optical device including: a passive core layer in which is formed an optical circuit having a refractive index n2; an active core layer covering at least a portion of the optical circuit, exhibiting an electro-optical effect, and having a refractive index of n1 higher than n2; a lower clad layer over which the passive core layer is formed and having a refractive index n3 lower than n2; an upper clad layer covering the active and passive core layers and having a refractive index n5 lower than n1; a lower electrode disposed below the lower clad layer; and an upper electrode disposed on the upper clad layer, in which the entrance and exit portions of the active core layer are tapered, respectively.
摘要:
The present invention provides a method of producing a composition which is useful for flavoring food or drinks. The method includes utilizing a heating reaction of methionine and a sugar, which results in methional being present in the composition at a higher concentration. The present invention also provides a food, etc. containing the composition produced by the method.Methionine and a sugar are mixed, and the mixture is heated under a two stage process having particular pH conditions for a particular time at a particular temperature. Moreover, during the mixing and heating of methionine and a sugar, one or more of sodium chloride, potassium chloride, calcium chloride and phosphate is/are added, and the mixture is heated under particular pH conditions for a particular time at a particular temperature.
摘要:
A method of manufacturing an optical information recording medium to/from which signals can optically be recorded and reproduced. The recording medium includes a signal substrate (100), a signal recording layer (110), and a transparent cover layer (125) having a first transparent layer (115) and a second transparent layer (120), which is harder than the first transparent layer (115). Signals can be recorded and reproduced to and from the recording medium by a light transmitted to the signal recording layer through the transparent cover layer (125). The first transparent layer is formed so as to have a first predetermined distribution of thickness. The second transparent layer is formed so as to have a second predetermined distribution of thickness to make the total thickness of the transparent cover layer (125) uniform. The first transparent layer (115) may be made of a plurality of thin laminated transparent layers.
摘要:
A two-dimensional coding method includes: using a two-dimensional image containing plural reference pixels each having a different brightness and data pixels representing data in accordance with brightness; and coding a binary sequence of plural bits to be recorded as a hologram by matching the brightness level of the data pixel based on the brightnesses of the plural reference pixels.
摘要:
An optical recording method includes providing an optical recording medium capable of forming both a refractive index grating and an absorption grating by light irradiation; Fourier transforming with the same lens a signal beam that represents binary digital data with a brightness image and a reference beam such that they are focused at a point outside the optical recording medium; irradiating the Fourier transformed signal beam and reference beam simultaneously onto the optical recording medium and forming a diffraction grating at the optical recording medium according to an interference fringe between the signal beam and the reference beam, or according to an interference fringe within the signal beam itself; and recording the signal beam as a hologram.