摘要:
The present invention relates to lithium manganate particles having a primary particle diameter of not less than 1 μm and an average particle diameter (D50) of not less than 2 μm and not more than 10 μm as measured by a particle size distribution meter, and forming particles having substantially a single phase, which have a composition represented by the following chemical formula: Li1+xMn2−x−yY1yO4+Y2 where Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti; Y2 is at least one element constituting a sintering aid having a melting point of not higher than 800° C., x and y satisfy 0.03≦x≦0.15 and 0.05≦y≦0.20, respectively, and Y2 is present in an amount of 0.1 to 2.5 mol % based on Mn; the Y1 element being dispersed within the respective particles, and an X-ray diffraction intensity ratio of I(400)/I(111) of the particles being not less than 38% and an X-ray diffraction intensity ratio of I(440)/I(111) thereof being not less than 18%.
摘要:
The present invention provides lithium manganate which has a high output and is excellent in high-temperature stability. The present invention relates to lithium manganate particles which are produced by mixing a lithium compound, a manganese compound, a Y compound and an A compound with each other and then calcining the resulting mixture, and have a composition represented by the following chemical formula 1 and an average secondary particle diameter (D50) of 1 to 15 μm, Li1+xMn2−x−yYyO4+zA (Chemical Formula) in which Y is at least one element selected from the group consisting of Al and Mg; A is a sintering aid element having a melting point of not higher than 850° C.; x and y satisfy 0.03≦x≦0.15 and 0≦y≦0.20, respectively; z is in the range of 0 to 2.5 mol % based on Mn, wherein the lithium manganate particles have a sulfur content of not more than 100 ppm.
摘要:
The present invention relates to lithium manganate particles having a primary particle diameter of not less than 1 μm and an average particle diameter (D50) of not less than 2 μm and not more than 10 μm as measured by a particle size distribution meter, and forming particles having substantially a single phase, which have a composition represented by the following chemical formula: Li1+xMn2−x−yY1yO4+Y2 where Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti; Y2 is at least one element constituting a sintering aid having a melting point of not higher than 800° C., x and y satisfy 0.03≦x≦0.15 and 0.05≦y≦0.20, respectively, and Y2 is present in an amount of 0.1 to 2.5 mol % based on Mn; the Y1 element being dispersed within the respective particles, and an X-ray diffraction intensity ratio of I(400)/I(111) of the particles being not less than 38% and an X-ray diffraction intensity ratio of I(440)/I(111) thereof being not less than 18%. The lithium manganate particles of the present invention have a high output and are excellent in high-temperature stability.
摘要:
The present invention relates to lithium manganate particles having a primary particle diameter of 1 to 8 μm and forming substantially single-phase particles, which have a composition represented by the following chemical formula: Li1+xMn2-x-yY1yO4+Y2 in which Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti; Y2 is P and is present in an amount of 0.01 to 0.6 mol % based on Mn; and x and y satisfy 0.03≦x≦0.15 and 0.05≦y≦0.20, respectively, and which lithium manganate particles have a specific surface area of the lithium manganate particles of 0.3 to 0.9 m2/g (as measured by BET method); and have an average particle diameter (D50) of the lithium manganate particles of 3 to 10 μm. A positive electrode active substance of a lithium ion secondary battery using the lithium manganate particles of the present invention has a high output and is excellent in high-temperature stability.
摘要:
The present invention relates to lithium manganate particles having a primary particle diameter of 1 to 8 μm and forming substantially single-phase particles, which have a composition represented by the following chemical formula: Li1+xMn2−x−yY1yO4+Y2 in which Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti; Y2 is P and is present in an amount of 0.01 to 0.6 mol % based on Mn; and x and y satisfy 0.03≦x≦0.15 and 0.05≦y≦0.20, respectively, and which lithium manganate particles have a specific surface area of the lithium manganate particles of 0.3 to 0.9 m2/g (as measured by BET method); and have an average particle diameter (D50) of the lithium manganate particles of 3 to 10 μm. A positive electrode active substance of a lithium ion secondary battery using the lithium manganate particles of the present invention has a high output and is excellent in high-temperature stability.
摘要:
The present invention provides a precursor of positive electrode active substance particles for non-aqueous electrolyte secondary batteries which have a high discharge voltage and a high discharge capacity, hardly suffer from side reactions with an electrolyte solution, and are excellent in cycle characteristics, positive electrode active substance particles for non-aqueous electrolyte secondary batteries, and processes for producing these particles, and a non-aqueous electrolyte secondary battery. The present invention relates to positive electrode active substance particles for non-aqueous electrolyte secondary batteries having a spinel structure with a composition represented by the following chemical formula (1), in which the positive electrode active substance particles satisfy the following characteristic (A) and/or characteristic (B) when indexed with Fd−3m in X-ray diffraction thereof: (A) when indexed with Fd−3m in X-ray diffraction of the positive electrode active substance particles, a ratio of I(311) to I(111) [I(311)/I(111)] is in the range of 35 to 43%, and/or (B) when indexed with Fd−3m in X-ray diffraction of the positive electrode active substance particles, a gradient of a straight line determined by a least square method in a graph prepared by plotting sin θ in an abscissa thereof and B cos θ in an ordinate thereof wherein B is a full-width at half maximum with respect to each peak position 2θ (10 to 90°) is in the range of 3.0×10−4 to 20.0×10−4; and Li1+xMn2−y−zNiyMzO4 Chemical Formula (1) wherein x, y, z fall within the range of −0.05≤x≤0.15, 0.4≤y≤0.6 and 0≤z≤0.20, respectively; and M is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, Co, Zn, Sb, Ba, W and Bi.
摘要:
The present invention relates to positive electrode active substance particles for lithium ion batteries, comprising lithium manganate particles comprising Li and Mn as main components and having a cubic spinel structure (Fd-3m), wherein primary particles of the positive electrode active substance have a dodecahedral or higher-polyhedral shape in which none of crystal planes equivalent to the (111) plane are located adjacent to each other, and flat crystal planes are crossed with each other to form a clear ridge, and an average primary particle diameter of the primary particles is not less than 1 μm and not more than 20 μm. The positive electrode active substance particles according to the present invention are excellent in packing property, load characteristics and high-temperature stability.
摘要:
According to the present invention, there is provided a process for producing lithium manganate particles having a high output and an excellent high-temperature stability. The present invention relates to a process for producing lithium manganate particles comprising the steps of mixing a lithium compound, a manganese compound and a boron compound with each other; and calcining the resulting mixture in a temperature range of 800 to 1050° C., wherein an average particle diameter (D50) of the boron compound is not more than 15 times an average particle diameter (D50) of the manganese compound, and wherein the lithium manganate particles have a composition represented by the following chemical formula: Li1+xMn2-x-yY1yO4+B in which Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti, and x and y satisfy the conditions of 0.03≦x≦0.15 and 0≦y≦0.20, respectively.
摘要:
According to the present invention, there is provided a process for producing lithium manganate particles having a high output and an excellent high-temperature stability. The present invention relates to a process for producing lithium manganate particles comprising the steps of mixing a lithium compound, a manganese compound and a boron compound with each other; and calcining the resulting mixture in a temperature range of 800 to 1050° C., wherein an average particle diameter (D50) of the boron compound is not more than 15 times an average particle diameter (D50) of the manganese compound, and wherein the lithium manganate particles have a composition represented by the following chemical formula: Li1+xMn2-x-yY1yO4+B in which Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti, and x and y satisfy the conditions of 0.03≦x≦0.15 and 0≦y≦0.20, respectively.
摘要:
The present invention relates to positive electrode active substance particles for lithium ion batteries, comprising lithium manganate particles comprising Li and Mn as main components and having a cubic spinel structure (Fd-3m), wherein primary particles of the positive electrode active substance have a dodecahedral or higher-polyhedral shape in which none of crystal planes equivalent to the (111) plane are located adjacent to each other, and flat crystal planes are crossed with each other to form a clear ridge, and an average primary particle diameter of the primary particles is not less than 1 μm and not more than 20 μm. The positive electrode active substance particles according to the present invention are excellent in packing property, load characteristics and high-temperature stability.