摘要:
A process for preparing olefinic living polymers having a molecular weight distribution (Mw/Mn) of 1 to 1.3, comprising polymerizing an olefinic monomer having 2 to 20 carbon atoms at low temperatures in the presence of a catalyst comprising (A) a hafnium or zirconium-containing compound having one or two cyclopentadienyl backbones, (B) a triphenyl boron compound or a tetraphenyl borate compound and optionally (C) a specific mono-, di- or trialkylaluminum compound. When the catalyst comprising the zirconium-containing compound is prepared by further using a titanium-containing compound (D), the polymerization temperature can be raised.
摘要:
A butadiene polymer (i) having a cis bond unit content of at least 50% based on the total butadiene units, a number average molecular weight (Mn) of 1,000 to 10,000,000, and at least 80%, based on the total molecular chains, of living chains containing a transition metal of group IV of the Periodic table at a terminal thereof; a polymer (ii) obtained by modifying terminals of the polymer (i); and a polymer (iii) obtained by coupling the polymers (i). These polymers (i), (ii) and (iii) are obtained by polymerizing a conjugated diene monomer alone or with a copolymerizable monomer at a specific temperature in the presence of a catalyst comprising a compound (A) of a transition metal of group IV of the periodic table having a cyclopentadienyl structure and a co-catalyst (B) selected from organoaluminum-oxy compound (a) and others and optionally further by contacting the resultant polymer with a terminal modifier or a coupling agent.
摘要:
A catalyst comprising an organoaluminum compound and a vanadium chelate compound having the lability to cause olefins to undergo living coordination polymerization is contacted with a terminal diolefin to obtain a catalyst for living polymer production. When the above contact is:conducted in the presence of a cycloolefin or an internal olefin, the yield of a living polymer can be improved. By modifying all ends of the living polymer obtained, a telechelic olefin polymer is obtained in which all the polymer chains are modified with functional groups.
摘要:
A catalyst for the polymerization of olefines comprises a solid catalytic component obtained by pre-polymerizing propylene in the presence of (A) a solid component containing magnesium, titanium, halogen and an electron-donating compound, (B) an organoaluminum compound, and (C) an alkylalkoxysilane represented by the formula, R.sup.1 Si(OR.sup.2)(OCH.sub.3).sub.2, wherein R.sup.1 represents a branched or cyclic alkyl group having 3 to 6 carbon atoms, and R.sup.2 represents a branched alkyl, alkenyl or alkinyl group having 3 to 6 carbon atoms; (B) an organoaluminum compound; and (D) an alkyltrialkoxysilane represented by the formula, R.sup.3 Si(OR.sup.4).sub.2 (OCH.sub.3), wherein R.sup.3 represents a linear alkyl group having 3 to 6 carbon atoms, and R.sup.4 represents a branched alkyl, alkenyl or alkinyl group having 3 to 5 carbon atoms.
摘要:
By introducing inequality to the information dispersal/sharing storage method, a ciphertext management method or the like is provided to support novel ciphertext data management. After the ciphertext and key data are each divided, pairs of the divided ciphertext and key data are generated. Specifically, they are one-to-one paired as with conventional techniques. Furthermore, additional one-to-many pairs are generated. The generated one-to-one pairs provide equality as with conventional techniques. When the number of the one-to-one pairs of the divided ciphertext and key data that can be used is equal to or greater than a threshold number, both the ciphertext data and the key data can be reconstructed, and accordingly, the secret data can be decoded. In contrast, even when the one-to-many pairs that can be used is equal to or greater than a threshold number, the ciphertext data and/or the key data cannot be reconstructed. This provides inequality.
摘要:
A microporous polyolefin membrane comprising a polyethylene resin, and polypropylene having a weight-average molecular weight of 6×105 or more and a heat of fusion of 90 J/g or more (measured by a differential scanning calorimeter), a fraction having a molecular weight of 1.8×106 or more being 10% or more by mass of the polypropylene.
摘要:
The method of producing a semiconductor device in which chips are resin-molded, including steps of: preparing frames having front and back surfaces and die pads; preparing an insulation resin sheet having a first and a second surfaces; preparing a resin-sealing metal mold having cap pins; mounting the resin sheet inside the resin-sealing metal mold in such a manner that the second surface of the resin sheet contacts an inner bottom surface of the resin-sealing metal mold; mounting power chips on the surfaces of the die pads; positioning the frames on the first surface of the resin sheet in such a manner that the back surfaces of the die pads contact the first surface of the resin sheet; pressing the die pads toward the resin sheet using the cap pins and fixing the die pads; injecting a sealing resin in the resin-sealing metal mold and hardening the sealing resin; and removing the semiconductor device in which the power chips are molded with the sealing resin out from the resin-sealing metal mold. The resin sheet may include a metal foil which is disposed to the second surface.
摘要:
A photographic material is disclosed, which comprises a support having provided thereon at least one electrically conductive layer, said conductive layer comprising carbon black having a dibutyl phthalate absorption capability of at least 80 cc/100 g and a hydrophilic binder.
摘要:
A method for forming an image comprising heating a light-sensitive material comprising a support having thereon at least a light-sensitive silver halide, a dye providing substance, a binder, and an acetylene silver compound, simultaneously with or after imagewise exposure thereof in the presence of water and at least one of a base and a base precursor, thereby transferring a diffusible dye thus formed or released to a dye fixing layer.
摘要:
The invention relates to a multi-layer, microporous membrane having appropriate permeability, pin puncture strength, shutdown temperature, shutdown speed, meltdown temperature, and thickness uniformity. The invention also relates to a battery separator formed by such multi-layer, microporous membrane, and a battery comprising such a separator. Another aspect of the invention relates to a method for making the multi-layer, microporous polyolefin membrane, a method for making a battery using such a membrane as a separator, and a method for using such a battery.