摘要:
Generated amount of active species is increased, and dew formation or moisture attachment hardly occurs on a dielectric layer. A plasma generating apparatus including a pair of electrodes, wherein a dielectric layer is arranged on at least one of surfaces of the electrodes facing each other, plasma discharge occurs as a predetermined voltage is applied to the electrodes, and a coating film is arranged on a surface of the dielectric layer.
摘要:
Generated amount of active species is increased, and dew formation or moisture attachment hardly occurs on a dielectric layer. A plasma generating apparatus including a pair of electrodes, wherein a dielectric layer is arranged on at least one of surfaces of the electrodes facing each other, plasma discharge occurs as a predetermined voltage is applied to the electrodes, and a coating film is arranged on a surface of the dielectric layer.
摘要:
The purpose of the present invention is to minimize ozone production while increasing the production of an active species. The plasma generating device (100) comprises: a pair of electrodes (21, 22) in which dielectric films (21a, 21b) are disposed on at least one opposing face; voltage application means (4) for applying a pulse voltage across the electrodes (21, 22) to bring about a plasma discharger; and fluid circulation holes (21b, 22b) that are disposed in locations corresponding to the electrodes (21, 22), respectively, and that are configured to pass entirely therethrough. The plasma generating device is also configured such that a fluid passing through the fluid circulation holes (21b, 22b) comes into contact with the plasma, generating ions or radicals, wherein the voltage applying means (4) varies the peak value and/or the pulse width of the pulse voltage applied across the electrodes (21, 22).
摘要:
The purpose of the present invention is to minimize ozone production while increasing the production of an active species. The plasma generating device (100) comprises: a pair of electrodes (21, 22) in which dielectric films (21a, 21b) are disposed on at least one opposing face; voltage application means (4) for applying a pulse voltage across the electrodes (21, 22) to bring about a plasma discharger; and fluid circulation holes (21b, 22b) that are disposed in locations corresponding to the electrodes (21, 22), respectively, and that are configured to pass entirely therethrough. The plasma generating device is also configured such that a fluid passing through the fluid circulation holes (21b, 22b) comes into contact with the plasma, generating ions or radicals, wherein the voltage applying means (4) varies the peak value and/or the pulse width of the pulse voltage applied across the electrodes (21, 22).
摘要:
The present invention obtains both the feature of deodorizing by means of active species and the feature of killing floating and attached bacteria by releasing the active species to the exterior of a device. The present invention is provided with a pair of electrodes (21, 22), electrode (21) being arranged with the dielectric film (21a) on the surface facing electrode (22) and electrode (22) being arranged with dielectric film (22a) on the surface facing electrode (21), wherein plasma is discharged when a predetermined voltage is applied between the electrodes (21, 22). The present invention is configured in a manner such that a fluid through-hole (21b, 22b) is disposed on and through each electrode (21, 22) on a corresponding location, and is characterized in that at least a portion of the outline of the corresponding fluid through-holes (21b, 22b) are positioned at a different position from one another when viewing from face plate direction of the electrodes.
摘要:
Methods, systems, apparatus, devices for tracking, controlling and providing feedback on droplets used in EUV source technology. The method and system track and correct positions of droplet targets and generated plasma including generating the droplet target or plasma, optically imaging the generated target, determining position coordinates, comparing the position coordinates to a set optimal position to determine if a deviation has occurred and moving the generated target back to the optimal position if the deviation has occurred. The optical imaging step includes activating a light source to image the generated target, the light source is strobed at approximately the same rate as the droplet production to provide illumination of the droplet for stroboscopic imaging. The step of moving is accomplished mechanically by moving the generated target back to the predefined position or electronically under computer control.
摘要:
Methods, systems and apparatus for producing a variable, known number of nanoparticles of various materials in an expanding mist in a vacuum or enclosure. The configurations allow for this mist of small particles to be produced in bursts, at repetition rates over a wide range of frequencies. The technique produces an isotropically expanding mist of particles. Direct applications of the invention can be used for the development of high power short wavelength incoherent light sources for applications in EUV lithography (EUVL), advanced microscopy, precision metrology, and other fields.
摘要:
Methods, systems and apparatus for producing a variable, known number of nanoparticles of various materials in an expanding mist in a vacuum or enclosure. The configurations allow for this mist of small particles to be produced in bursts, at repetition rates over a wide range of frequencies. The technique produces an isotropically expanding mist of particles. Direct applications of the invention can be used for the development of high power short wavelength incoherent light sources for applications in EUV lithography (EUVL), advanced microscopy, precision metrology, and other fields.
摘要:
Methods, systems and apparatus for producing a variable, known number of nanoparticles of various materials in an expanding mist in a vacuum or enclosure. The configurations allow for this mist of small particles to be produced in bursts, at repetition rates over a wide range of frequencies. The technique produces an isotropically expanding mist of particles. Direct applications of the invention can be used for the development of high power short wavelength incoherent light sources for applications in EUV lithography (EUVL), advanced microscopy, precision metrology, and other fields.