摘要:
Generation of new crystal defects in a monocrystalline semiconductor layer caused by heat treatment, oxidation treatment or polishing treatment is prevented in a method of manufacturing a semiconductor device of an SOI structure. Thus, unevenness in the properties of active devices formed on the monocrystalline semiconductor layers and their malfunctions can be restrained. A non-monocrystalline semiconductor layer formed on an insulator layer is melted to have a prescribed temperature distribution, and monocrystallized. The region of the obtained monocrystalline semiconductor layer corresponding to a high temperature portion in melting is selectively removed before the monocrystalline semiconductor layer is subjected to heat-treatment. Active devices are formed on the resultant island shaped monocrystalline semiconductor layers. The surface of the island shaped monocrystalline semiconductor layer may be polished to be planarized before the formation of the active device.
摘要:
In a method of manufacturing a stacked-type semiconductor device, firstly, a first semiconductor substrate having a first device formed thereon is covered with an interlayer insulating layer and a planarized polycrystalline silicon layer is formed on the interlayer insulating layer. The first semiconductor substrate and a second semiconductor substrate are joined together by putting the surface of the polycrystalline silicon layer in close contact with the surface of a refractory metal layer formed on the second semiconductor substrate, applying thermal treatment at 700.degree. C. or below and changing the refractory metal layer to silicide.
摘要:
In a miniaturized complete CMOS SRAM of a TFT load type, a field effect thin-film transistor (TFT) can achieve stable reading and writing operation of a memory cell and can reduce power consumption thereof. The field effect thin-film transistor formed on an insulator includes an active layer and a gate electrode. The gate electrode is formed on a channel region of the active layer with a gate insulating film therebetween. The active layer is formed of a channel region and source/drain regions. The channel region is formed of a monocrystal silicon layer and does not includes a grain boundary. The source/drain regions is formed of a polysilicon layer. The channel region has a density of crystal defects of less than 10.sup.9 pieces/cm.sup.2. The thin film transistor shows an ON current of 0.25 .mu.A/.mu.m per channel width of 1 .mu.m and an OFF current of 15 fA/.mu.m. The thin-film transistor can be applied to a p-channel MOS transistor serving as a load transistor in a memory cell of a CMOS type SRAM.
摘要:
In a method of manufacturing a stacked-type semiconductor device, firstly, a first semiconductor substrate having a first device formed thereon is covered with an interlayer insulating layer and a planarized polycrystalline silicon layer is formed on the interlayer insulating layer. The first semiconductor substrate and a second semiconductor substrate are joined together by putting the surface of the polycrystalline silicon layer in close contact with the surface of a refractory metal layer formed on the second semiconductor substrate, applying thermal treatment at 700.degree. C. or below and changing the refractory metal layer to silicide.
摘要:
A semiconductor device includes a conductor layer (3, 7) having a silicon crystal, an insulator layer (5, 15) formed on the surface of the conductor layer (3, 7) having a contact hole therethrough to said surface of the conductor layer (3, 7), an interconnecting portion formed at a predetermined location in the insulator layer (5, 15) and having a contact hole (6, 9) the bottom surface of which becomes the surface of the conductor layer (3, 7), a barrier layer (14) formed at the bottom of said contact hole at least on the surface of the conductor layer (3, 7) in the interconnecting portion, and a metal silicide layer (12) formed on the barrier layer (14). This semiconductor device is manufactured by depositing the insulator layer (5, 15) having the contact hole (6, 9) on the conductor layer (3, 7) having the silicon crystal, forming the barrier layer (14) and the polysilicon layer (7, 10) overlapping each other in the contact hole (6, 9) and on the insulator layer (5, 15) and then patterning these overlapping barrier layer (14) and polysilicon layer (7, 10), forming a metal layer (8, 11) thereon to be silicidized, and removing unreacted metal. The semiconductor device thus manufactured prevents a suction of silicon from the conductor layer (3, 7) to the metal silicide layer (12) and hence prevents an increase in resistance value due to a deficiency of silicon produced in the conductor layer (3, 7), thereby minimizing a series resistance of the metal silicide layer (12), a contact portion and the conductor layer (3, 7).
摘要:
A field effect transistor is formed as a first semiconductor element on a main surface of a first semiconductor layer (1). An interlayer insulating film (10) constituted by a first insulating layer (101) and a second insulating layer (102) is formed on the first semiconductor element. The first insulating layer (101) is formed of a BPSG film having a glass transition point no higher than 750.degree. C. The second insulating layer (102) is formed of a silicon oxide film having a glass transition point higher than 750.degree. C. and a thickness no less than 2000 .ANG. and no more than 1 .mu.m formed on the first insulating layer (101). A second semiconductor layer (11) is formed on the second insulating layer (102) of the interlayer insulating film (10). The second semiconductor layer (11) is formed to be an island, with the peripheral portions isolated. A field effect transistor as a second semiconductor element is formed in the second semiconductor layer (11). The first insulating layer (101) suppresses stress remained in the second semiconductor layer (11) derived from a difference between coefficient of thermal expansion of the second semiconductor layer (11) and the interlayer insulating film (10). The second insulating layer (102) suppresses lateral distortion generated in the semiconductor layer (11). The characteristics of the second semiconductor element can be improved.
摘要:
A manufacturing method of a semiconductor device having a planar single crystal semiconductor surface is disclosed. In the manufacturing method of a semiconductor device, an insulating film is formed on a semiconductor substrate, a noncrystal semiconductor film is formed on the insulating film, a stripe-like anti-reflection film is formed on the noncrystal semiconductor film, and laser beam is irradiated along the anti-reflection film. Because of the difference in temperature, a film with thicknesses different in a substrate region in which the anti-reflection film is formed and a region around it is formed. A film to be a machining allowance for polishing is formed on the single crystal semiconductor film, polishing is performed from the side of said film to be a machining allowance for polishing so that desired planar film thickness of the single crystal semiconductor film is implemented.
摘要:
In a miniaturized complete CMOS SRAM of a TFT load type, a field effect thin-film transistor (TFT) can achieve stable reading and writing operation of a memory cell and can reduce power consumption thereof. The field effect thin-film transistor formed on an insulator includes an active layer and a gate electrode. The gate electrode is formed on a channel region of the active layer with a gate insulating film therebetween. The active layer is formed of a channel region and source/drain regions. The channel region is formed of a monocrystal silicon layer and does not includes a grain boundary. The source/drain regions is formed of a polysilicon layer. The channel region has a density of crystal defects of less than 10.sup.9 pieces/cm.sup.2. The thin film transistor shows an ON current of 0.25 .mu.A/.mu.m per channel width of 1 .mu.m and an OFF current of 15 fA/.mu.m. The thin-film transistor can be applied to a p-channel MOS transistor serving as a load transistor in a memory cell of a CMOS type SRAM.
摘要:
A method of forming single-crystal semiconductor films, in which a single-crystal semiconductor substrate having a crystal axis transferred from a single-crystal semiconductor substrate is formed on an insulator layer via a seed hole which goes through the insulator layer which is formed on the single-crystal semiconductor substrate, comprises the steps of: forming a non-single-crystal semiconductor substrate connected to a single-crystal semiconductor substrate via a seed hole on an insulator layer; irradiating a compound beam which includes a first energy beam having a power density which is capable of melting a non-single-crystal semiconductor film and a second energy beam having a power density which is not capable of melting the non-single-crystal semiconductor film but capable of softening the insulator layer positioned below the non-single-crystal semiconductor film; and epitaxially growing the single-crystal semiconductor film in such a way that the non-single-crystal semiconductor film is melted and then solidified again by scanning the surface of the non-single-crystal semiconductor film with the compound beam, starting from the seed hole, in such a manner that the first energy beam is irradiated first and the second energy beam is irradiated second.
摘要:
A vector of the present invention has DNA encoding a protein or a product having the same effect as the protein, the protein containing an amino acid sequence from amino acid numbers 47 to 802 in SEQ. ID. NO:2. Expression of the DNA gives human chondroitin synthase. By using human chondroitin synthase, it is possible to produce a saccharide chain having a repeating disaccharide unit of chondroitin. The DNA or part thereof may be used as a probe for hybridization for the human chondroitin synthase.
摘要翻译:本发明的载体具有编码蛋白质或具有与蛋白质相同效果的产物的DNA,该蛋白质含有SEQ ID NO:47至802的氨基酸序列。 ID。 NO:2。 DNA的表达给人软骨素合成酶。 通过使用人软骨素合成酶,可以生成具有软骨素重复二糖单元的糖链。 DNA或其部分可以用作人类软骨素合酶杂交的探针。