摘要:
A method for transcoding data comprises receiving an input stream of data formatted according to a USB standard, the input stream is partitioned into a sequence of blocks having a fixed length. At least one input block of the input stream comprises one or more data symbols and one or more control symbols, the one or more control symbols include one or more general control symbols. The method also includes transcoding the at least one input block to generate at least one output block comprising a synchronization block and a control/data block. The control/data block comprises the one or more data symbols of the at least one input block, a representation of the one or more general control symbols of the at least one input block, and a plurality of indicators indicating locations of the one or more data symbols and control symbols in the at least one input block.
摘要:
A system and method are provided for Soft Interference Cancellation (SIC) in receiving Single Carrier Frequency Division Multiple Access (SC-FDMA) Multiple-Input Multiple Output (MIMO) signals. A receiver with Mr antennas accepts multicarrier signals transmitted simultaneously, with N overlapping carrier frequencies. The receiver removes a cyclic prefix (CP), and fast Fourier transforms (FFT) the multicarrier signal from each antenna, supplying Mr number of N-tone signals y. Using either parallel SIC (P-SIC) or successive SIC (S-SIC), interference is canceled in each of the Mr signals, and soft symbols are supplied for each of U layers. Interference is canceled using the P-SIC process by parallel processing the U layers in an i-th iteration, in response to feedback from an (i−1)th iteration. Alternatively, interference is canceled using the S-SIC process by sequentially processing the U layers in an i-th iteration, in the order of u0,u1, . . . , uU−1, using feedback generated from previously processed layers.
摘要:
Provided are a system and method of estimating channels for a plurality of multicarrier signals in a wireless receiver. A receiver accepts a plurality of multicarrier signals, transmitted simultaneously from a plurality of transmitters, with overlapping carrier frequencies and nominally orthogonal reference signals. For each multicarrier signal, a reference signal is recovered including a plurality of adjacent subcarrier frequencies carrying predetermined symbols. A channel estimate is found across the plurality of adjacent subcarrier frequencies, for each multicarrier signal channel, by compensating for a loss of orthogonality between reference signals, in response to assuming a linear phase rotation for each channel across the plurality of adjacent reference signal subcarriers, and a constant amplitude for each channel across the plurality of adjacent reference signal subcarriers. More explicitly, the assumption of linear phase rotation and constant amplitude permits a Direction of Arrival (DoA) algorithm to be used.
摘要:
A substrate integrated waveguide (10) comprises a top conductive layer (14) and a bottom conductive layer (15) provided on either sides a substrate (11). At least one wall (12, 13) of conductive material is provided in the substrate (11) to define, together with the top and bottom layers (14, 15), the waveguide. The at least one wall (12, 13) comprise a multitude of thin conductive wires densely arranged close to each other in the substrate (11) and having respective short ends connected to the top and bottom layers (14, 15). The high number of wires per surface unit in the wall (12, 13) effectively prevent significant amount of power leakage through the wall (12, 13) during operation of the substrate integrated waveguide (10).
摘要:
A device to output video and/or audio data (for example, corresponding to a selected channel which is one of a plurality of channels of a broadcast spectrum), the device comprising (i) baseband processor circuitry to demodulate a baseband signal into a data stream (for example, MPEG type data stream, such as an MPEG-2 transport or program data stream) having a plurality of packets including a plurality of video and/or audio packets wherein each video and/or audio packet includes video and/or audio payload, (ii) de-multiplexer circuitry, coupled to the baseband processor circuitry, to: (a) de-multiplex the data stream to obtain the video and/or audio payload of the plurality of video and/or audio packets, (b) detect and locate one or more errors in one or more of the video and/or audio packets, and (c) generate error characterization data (for example, information which is representative of the type of error and/or the location of the error in the video and/or audio payload) which is representative of or characterizes one or more errors in the one or more of the video and/or audio packets; and (iii) decoder circuitry, coupled to the de-multiplexer circuitry, to: (a) receive the video and/or audio payload and the error characterization data, and (b) conceal the one or more errors in the video and/or audio payload using the error characterization data.
摘要:
A method is provided for Single Carrier-Frequency-Division Multiple Access (SC-FDMA) Physical Uplink Control Channel (PUCCH) format 1/1a/1b detection in a wireless communications receiver. The receiver accepts a plurality of multicarrier signals transmitted simultaneously from a plurality of transmitters, with overlapping carrier frequencies. For each multicarrier signal, a single tap measurement of time delay is performed using a Direction of Arrival (DoA) technique. In response to the single tap measurements, PUCCH 1/1a/1b format signals are detected. Prior to performing the single tap measurements, the multicarrier signals are decorrelated in the time domain, using corresponding orthogonal code covers. Subsequent to the single tap measurements, each multicarrier signal is decorrelated in the frequency domain, using a corresponding cyclic shift. Subsequent to decorrelating the multicarrier signals in the frequency domain, a Generalized Likelihood Ratio Test (GLRT) is performed for each decorrelated multicarrier signal.
摘要:
A substrate integrated waveguide (10) comprises a top conductive layer (14) and a bottom conductive layer (15) provided on either sides a substrate (11). At least one wall (12, 13) of conductive material is provided in the substrate (11) to define, together with the top and bottom layers (14, 15), the waveguide. The at least one wall (12, 13) comprise a multitude of thin conductive wires densely arranged close to each other in the substrate (11) and having respective short ends connected to the top and bottom layers (14, 15). The high number of wires per surface unit in the wall (12, 13) effectively prevent significant amount of power leakage through the wall (12, 13) during operation of the substrate integrated waveguide (10).
摘要:
A system and method are provided for Single Carrier-Frequency-Division Multiple Access (SC-FDMA) Physical Uplink Control Channel (PUCCH) format 2/2a/2b detection. A receiver accepts a plurality of multicarrier signals transmitted simultaneously from a plurality of transmitters, with overlapping carrier frequencies. For each multicarrier signal, a single tap measurement of time delay is performed using a Direction of Arrival (DoA) technique. After performing a back-end processing operation, PUCCH 2/2a/2b format signals are detected. The back-end processing operation is selected from one of the following options: (1) decorrelation, channel estimation, equalization per user, and decoding per user; (2) channel estimation, equalization, and decoding per user; (3) decorrelation plus maximum likelihood detection (ML) per user; and, (4) ML detection over all users. Selection criteria is also provided.
摘要:
A system and method are provided for carrier frequency offset (CFO) and Doppler frequency estimation and correction for Orthogonal Frequency-Division Multiple Access (OFDMA) and Single Carrier-Frequency-Division Multiple Access (SC-FDMA) signals in a wireless communications receiver. The receiver is capable of accepting a plurality of multicarrier signals transmitted simultaneously from a plurality of transmitters, with overlapping carrier frequencies and orthogonal reference signals. For each multicarrier signal, a channel estimate is performed and the channel is equalized. Then, a frequency offset is estimated between the transmit carrier frequency of each multicarrier signal and a receiver local oscillator frequency using either the phase rotation of data constellations as a function of time or the phase rotation of channel estimates as a function of time. The receiver supplies the CFO/Doppler frequency estimates and corrects the equalized symbols prior to demodulation.