摘要:
Methods and systems use laser pulses to process a selected structure on or within a semiconductor substrate. The structure has a surface, a width, and a length. The laser pulses propagate along axes that move along a scan beam path relative to the substrate as the laser pulses process the selected structure. The method simultaneously generates on the selected structure first and second laser beam pulses that propagate along respective first and second laser beam axes intersecting the selected structure at distinct first and second locations. The first and second laser beam pulses impinge on the surface of the selected structure respective first and second beam spots. Each beam spot encompasses at least the width of the selected link. The first and second beam spots are spatially offset from one another along the length of the selected structure to define an overlapping region covered by both the first and the second beam spots and a total region covered by one or both of the first and second beam spots. The total region is larger than the first beam spot and also larger than the second beam spot. The method sets respective first and second energy values of the first and second laser beam pulses to cause complete depthwise processing of the selected structure across the width of the structure in at least a portion of the total region.
摘要:
A specially shaped laser pulse energy profile characterized by different laser wavelengths at different times of the profile provides reduced, controlled jitter to enable semiconductor device micromachining that achieves high quality processing and a smaller possible spot size.
摘要:
A workpiece processing system employs a common modular imaged optics assembly and an optional variable beam expander for optically processing multiple laser beams. In one embodiment, a laser and a fixed beam expander cooperate to produce a laser beam that propagates through a beam switching device to produce multiple laser beams that propagate along separate propagation path portions and subsequently merge into a common path portion through an imaged optics assembly and optional variable expander. The beam expander sets the shape of the laser beams in the form of a Gaussian spatial distribution of light energy. The imaged optics assembly shapes the Gaussian spatial distribution of the laser beams to form output beams of uniform spatial distribution. In an alternative embodiment, the beam switching device is removed and the laser beams propagate from separate laser sources associated with separate optional beam expanders.
摘要:
A laser beam switching system employs a laser coupled to a beam switching device that causes a laser beam to switch between first and second beam positioning heads such that while the first beam positioning head is directing the laser beam to process a workpiece target location, the second beam positioning head is moving to another target location and vice versa. A preferred beam switching device includes first and second AOMs positioned such that the laser beam passes through the AOMs without being deflected. When RF is applied to the first AOM, the laser beam is diffracted toward the first beam positioning head, and when RF is applied to the second AOM, the laser beam is diffracted toward the second beam positioning head.
摘要:
A laser pulse with a specially tailored temporal power profile, instead of a conventional temporal shape or substantially square shape, severs an IC link. The specially tailored laser pulse preferably has either an overshoot at the beginning of the laser pulse or a spike peak within the duration of the laser pulse. The timing of the spike peak is preferably set ahead of the time when the link is mostly removed. A specially tailored laser pulse power profile allows the use of a wider laser pulse energy range and shorter laser wavelengths, such as the green and UV, to sever the links without appreciable damage to the substrate and passivation structure material located on either side of and underlying the links.
摘要:
A laser pulse with a specially tailored temporal power profile, instead of a conventional temporal shape or substantially square shape, severs an IC link. The specially tailored laser pulse preferably has either an overshoot at the beginning of the laser pulse or a spike peak within the duration of the laser pulse. The timing of the spike peak is preferably set ahead of the time when the link is mostly removed. A specially tailored laser pulse power profile allows the use of a wider laser pulse energy range and shorter laser wavelengths, such as the green and UV, to sever the links without appreciable damage to the substrate and passivation structure material located on either side of and underlying the links.
摘要:
A laser pulse with a specially tailored temporal power profile, instead of a conventional temporal shape or substantially square shape, severs an IC link. The specially tailored laser pulse preferably has either an overshoot at the beginning of the laser pulse or a spike peak within the duration of the laser pulse. The timing of the spike peak is preferably set ahead of the time when the link is mostly removed. A specially tailored laser pulse power profile allows the use of a wider laser pulse energy range and shorter laser wavelengths, such as the green and UV, to sever the links without appreciable damage to the substrate and passivation structure material located on either side of and underlying the links.
摘要:
A set (50) of laser pulses (52) is employed to sever a conductive link (22) in a memory or other IC chip. The duration of the set (50) is preferably shorter than 1,000 ns; and the pulse width of each laser pulse (52) within the set (50) is preferably within a range of about 0.1 ps to 30 ns. The set (50) can be treated as a single “pulse” by conventional laser positioning systems (62) to perform on-the-fly link removal without stopping whenever the laser system (60) fires a set (50) of laser pulses (52) at each link (22). Conventional IR wavelengths or their harmonics can be employed.
摘要:
A set (50) of laser pulses (52) is employed to sever a conductive link (22) in a memory or other IC chip. The duration of the set (50) is preferably shorter than 1,000 ns; and the pulse width of each laser pulse (52) within the set (50) is preferably within a range of about 0.1 ps to 30 ns. The set (50) can be treated as a single “pulse” by conventional laser positioning systems (62) to perform on-the-fly link removal without stopping whenever the laser system (60) fires a set (50) of laser pulses (52) at each link (22). Conventional IR wavelengths or their harmonics can be employed.
摘要:
A set (50) of laser pulses (52) is employed to sever a conductive link (22) in a memory or other IC chip. The duration of the set (50) is preferably shorter than 1,000 ns; and the pulse width of each laser pulse (52) within the set (50) is preferably within a range of about 0.1 ps to 30 ns. The set (50) can be treated as a single “pulse” by conventional laser positioning systems (62) to perform on-the-fly link removal without stopping whenever the laser system (60) fires a set (50) of laser pulses (52) at each link (22). Conventional IR wavelengths or their harmonics can be employed.