摘要:
Battery systems and modules having external thermal management systems are provided. In one embodiment, a battery module includes a housing and at least one electrochemical cell disposed within the housing. The battery module also includes a thermal interface having a first side in contact with the at least one electrochemical cell. The battery module also includes a heat sink in contact with a second side of the thermal interface. The thermal interface is adapted to enable heat transfer from the at least one electrochemical cell to the heat sink.
摘要:
Battery systems and modules having external thermal management systems are provided. In one embodiment, a battery module includes a housing and at least one electrochemical cell disposed within the housing. The battery module also includes a thermal interface having a first side in contact with the at least one electrochemical cell. The battery module also includes a heat sink in contact with a second side of the thermal interface. The thermal interface is adapted to enable heat transfer from the at least one electrochemical cell to the heat sink.
摘要:
A battery module includes a plurality of electrochemical cells provided side-by-side one another and a thermal management feature extending substantially the length of the battery module. The thermal management feature is coupled to a first side of each of the electrochemical cells and includes a passage though which a thermal management fluid may pass and a heat sink provided within the passage to transfer heat between the electrochemical cells and the thermal management fluid.
摘要:
Provided herein are electrochemical cells having improved heat collection and transfer systems. For example, one electrochemical cell includes a drawn can having a blind side and a second side opposite the blind side. The cell also includes a positive terminal disposed in the blind side of the can and electrically coupled to at least one positive electrode disposed within the can and a negative terminal disposed in the blind side of the can and electrically coupled to at least one negative electrode disposed within the can. The cell further includes a base coupled to a substantially flat edge disposed on the second side of the can. A bottom surface of the base is adapted to maintain a substantially flat configuration when coupled to a heat sink.
摘要:
Provided herein are electrochemical cells having improved heat collection and transfer systems. For example, one electrochemical cell includes a drawn can having a blind side and a second side opposite the blind side. The cell also includes a positive terminal disposed in the blind side of the can and electrically coupled to at least one positive electrode disposed within the can and a negative terminal disposed in the blind side of the can and electrically coupled to at least one negative electrode disposed within the can. The cell further includes a base coupled to a substantially flat edge disposed on the second side of the can. A bottom surface of the base is adapted to maintain a substantially flat configuration when coupled to a heat sink.
摘要:
An integrated unit (10) in a refrigeration system (100) wherein a low-pressure conduit (18) and high-pressure conduit (36) are in conductive heat exchange relation to each other within an accumulator housing (12). The low pressure conduit (18) and high-pressure conduit (36) may be flat tubes wherein broad sides of the flat tubes are in conductive heat exchange relation to each other. The low-pressure conduit (18) and high-pressure conduit (36) or tubes have longitudinal axes (40, 42, respectively) that extend parallel to one another over a length (44) within the integrated unit (10).
摘要:
A battery module includes a rigid external casing made, for example, of a metallic sheet material. Securement features, tabs, and so forth may be formed in the material of the casing. The casing may be made by stamping and bending metallic sheet. A liner is disposed in the casing, and one or more battery cells are disposed in the liner. The liner may comprise an insulative sheet material that is cut and folded to generally conform to the casing. The structure may include a bus bar assembly, compression members, a thermal component and other structural and functional elements.
摘要:
A battery module includes a rigid external casing made, for example, of a metallic sheet material. Securement features, tabs, and so forth may be formed in the material of the casing. The casing may be made by stamping and bending metallic sheet. A liner is disposed in the casing, and one or more battery cells are disposed in the liner. The liner may comprise an insulative sheet material that is cut and folded to generally conform to the casing. The structure may include a bus bar assembly, compression members, a thermal component and other structural and functional elements.
摘要:
A cooling system is provided for supplying a coolant flow to a cold plate associated with a processing chip of an electronic device to cool the processing chip. The system includes an electric motor driven fan; a radiator; an accumulator tank connected to the radiator for the transfer of coolant between the accumulator and the radiator; an electric driven pump connected to at least one of the radiator, the accumulator, and the cold plate to provide the coolant flow through the radiator and the cold plate; and a fan shroud adapted to direct the airflow provided by the fan. The fan, the radiator, the accumulator tank, and the pump are mounted on the shroud to be carried thereby, and the pump is located on an exterior side of the of the fan shroud and outside of the radiator and the accumulator tank.
摘要:
Loss of efficiency as a result of inadequate subcooling caused by the entry of gaseous refrigerant into the subcooling stage of a condenser (20) from a receiver (22) is avoided in a construction wherein an upper inlet (64) to the receiver (22) is canted at an angle (.alpha.,.beta.) with respect to the longitudinal axis (74) of the receiver to induce a vortex flow (130) of refrigerant in the receiver (22). A baffle (106,115,118,121) may advantageously be located between the upper inlet (64) and a lower outlet (66) of the receiver (22) to isolate turbulence within the receiver (22) from the lower outlet (66).