摘要:
A cooling system is provided for supplying a coolant flow to a cold plate associated with a processing chip of an electronic device to cool the processing chip. The system includes an electric motor driven fan; a radiator; an accumulator tank connected to the radiator for the transfer of coolant between the accumulator and the radiator; an electric driven pump connected to at least one of the radiator, the accumulator, and the cold plate to provide the coolant flow through the radiator and the cold plate; and a fan shroud adapted to direct the airflow provided by the fan. The fan, the radiator, the accumulator tank, and the pump are mounted on the shroud to be carried thereby, and the pump is located on an exterior side of the of the fan shroud and outside of the radiator and the accumulator tank.
摘要:
A heat sink (10) is provided for use with a fan (16) for cooling an electronic component (12) wherein the heat sink (10) transfers heat from a heat rejecting surface (14) of the electronic component (12) to a cooling airflow provided by the fan (16). The heat sink (10) includes a heat conducting base member (20) having a substantially planar heat receiving surface (22) for overlaying the heat rejecting surface (14) of the electronic component (12) to receive heat therefrom, a heat conducting tower (24) extending from a side of the base member (20) opposite from the heat receiving surface (22) to receive heat therefrom, and a pair of serpentine fins (30) to transfer heat from the tower (24) to the airflow and the environment surrounding the heat sink (10).
摘要:
A flexible loop thermosyphon is provided having a flexible, hermetic, outer tube and a flexible, non-hermetic, inner tube, positioned concentrically within the outer tube, forming an annulus between the outer tube and inner tube. The annulus acts as a vapor conduit transferring vapor to the loop thermosyphon condenser while the inner tube acts as a condensate conduit returning liquid to the loop thermosyphon evaporator.
摘要:
A flexible loop thermosyphon is provided having a flexible, hermetic, outer tube and a flexible, non-hermetic, inner tube, positioned concentrically within the outer tube, forming an annulus between the outer tube and inner tube. The annulus acts as a vapor conduit transferring vapor to the loop thermosyphon condenser while the inner tube acts as a condensate conduit returning liquid to the loop thermosyphon evaporator.
摘要:
A fuel cell system (10) is provided and includes a fuel cell stack (11) and an integrated heat exchanger unit (12). The integrated heat exchanger unit (12) includes a fuel cell stack cooler (14) and a cathode exhaust gas condenser (16) arranged in a side-by-side relationship to be cooled by a common cooling air stream (18) that flows in parallel through the cooler (14) and the condenser (16).
摘要:
A heat exchanger provides simplicity, compactness, and high efficiency through a construction that includes an elongated tube structure comprising three rows of flattened multiport tubing, with a first row of tubing 30 and a third row of tubing 50 sandwiching a second row of tubing 40. The second row of tubing 40 terminates in opposite ends 42,44 on which are received refrigerant fittings 46 and 48 respectively. The first and third rows of tubing 30, 50 each include a run abutting and in heat exchange relation with the tubing 40. Opposing ends 32, 34 of the tubing 30 extend about refrigerant fittings 46 and 48 and are received in refrigerant fittings 36, 38. The tubing 50 includes parts 52 and 54 extending about the refrigerant fittings 46 and 48 and terminating in opposite ends 56, 58. The ends 56, 58 are also in fluid communication with fittings 36, 38.
摘要:
Extreme compactness is achieved in a combined evaporator 22 and suction line heat exchanger 20 through the use of a first, elongated, flattened, multi-port tube 34 having a major dimension DM, a minor dimension dm measured transverse to the major dimension DM and opposed ends 38, 42. The tube is formed in a serpentine configuration by bends 48 across the minor dimension dm with a plurality of generally parallel, spaced runs 46 extending between the ends 38, 42 to define the evaporator 22. An evaporator inlet fixture 30 is provided on one of the ends 38 and an evaporator outlet fixture 32 is provided on the other end 42. Fins 50 extend between adjacent ones of the runs 46. A second, elongated, flattened, multiport tube 70 having a length that is a minor fraction of that of the first tube includes opposed ends 72, 74 a major dimension DM, and a minor dimension dm measured transverse to the major dimension DM. The second tube, along a side wall substantially defining the major dimension DM is bonded to a corresponding side wall of the first tube 34 at a location 58 immediately upstream of the outlet fixture 32 to be in good heat exchange relation therewith to define a heat exchange suction line heat exchanger integral with the evaporator 22.
摘要:
A catalytic reactor/heat exchange device (10) is provided for generating a catalytic reaction in a reaction fluid flow (12) and transferring heat to a cooling fluid flow (14). The device includes reaction flow channels (20) with turbulators (30) therein. The turbulators (30) include an initial portion (40) and a selected portion (34) that includes a catalytic layer or coating (36) to initiate the desired catalytic reaction at a location (38) located downstream from the initial portion (40). In some preferred forms, each of the selected portions (34) of the turbulators (30) include at least one downstream section (103, 120) wherein the heat transfer performance has been intentionally reduced to improve performance of the device (10) during start up conditions.
摘要:
Heat exchange inefficiencies found in round tube plate fin heat exchangers are eliminated in an aluminum heat exchanger that includes first and second headers (20), (22) and at least one flattened tube (24), (70) extending between the headers (20), (22). A plurality of generally parallel tube runs are defined and each has opposite edges. A plurality of plate fins (26), (50) are arranged in a stack and each has a plurality of open ended slots (34), one for each run of the tubes (24), (70). Each of the tube runs (24), (70) is nested within corresponding slots (26) and the fins (26), (50) with one of the edges (40) of the tube runs extending outwardly of the corresponding fin (26). The assembly is brazed together.
摘要:
The present invention provides a heat exchange system for a vehicle. The heat exchange system can include a first heat exchange circuit supported by the vehicle and fluidly connecting a condenser, a compressor, an evaporator, and an expansion device, a module removably secured to the vehicle, the module housing a pump, and a second heat exchange circuit fluidly connecting a liquid-to-air heat exchanger, the pump, and the evaporator. The first exchange circuit can be operable to condition a first passenger space, and the second heat exchange circuit can be operable to condition a second passenger space spaced apart from the first passenger space.