Abstract:
A die for extrusion molding a resin bonding magnet. In the production of the magnet, a molten mixture of a magnetic powder and a resin are introduced into a cavity between an outer die and a mandril to which a magnetic field is applied. A steep temperature gradient along the die axis direction of the molten mixture and the cavity is achieved by making the outer die of a multiple layer structure along the die axis direction, utilizing two or more axially adjacent blocks or sheets made of the same or different materials whereby fluidity of the molten mixture is sufficiently high at the inlet of the cavity to enable the magnetic powder in the molten mixture to be sufficiently orientated in the direction of the magnetic field and then the molten mixture is cooled to a solidified state so that the orientation of the magnetic powder is not disturbed, thereby producing a magnetic having high magnetic properties.
Abstract:
A composition for forming a green body is provided. The composition for forming the green body contains powder constituted of a metallic material and a binder containing a first resin which is decomposable by ozone and a second resin which is also decomposable by ozone but decomposed later than the first resin. The green body formed of the composition is used in producing a brown body, wherein the brown body is produced by first exposing the green body to a high ozone content atmosphere to decompose the first resin and remove the decomposed first resin and then decompose the second resin and remove the decomposed second resin, and then at least once exposing the thus obtained green body to a low ozone content atmosphere whose ozone concentration is lower than an ozone concentration of the high ozone content atmosphere. By using the composition mentioned above, it is possible to produce the green body and the brown body from which a metal sintered body having a reduced metal oxide amount and improved properties (dimensional accuracy) can be produced safely, easily and cost-effectively. Such a brown body and a metal sintered body are also provided.
Abstract:
A composition for forming a green body is provided. The composition for forming the green body contains powder constituted of a metallic material and a binder containing a first resin which is decomposable by ozone and a second resin which is also decomposable by ozone but decomposed later than the first resin. The green body formed of the composition is used in producing a brown body, wherein the brown body is produced by first exposing the green body to a high ozone content atmosphere to decompose the first resin and remove the decomposed first resin and then decompose the second resin and remove the decomposed second resin, and then at least once exposing the thus obtained green body to a low ozone content atmosphere whose ozone concentration is lower than an ozone concentration of the high ozone content atmosphere. By using the composition mentioned above, it is possible to produce the green body and the brown body from which a metal sintered body having a reduced metal oxide amount and improved properties (dimensional accuracy) can be produced safely, easily and cost-effectively. Such a brown body and a metal sintered body are also provided.
Abstract:
A method of the present invention manufactures a watch-bracelet component through step (1A) of producing a green body containing a raw material powder by extrusion molding, step (2A) of cutting the green body, step (3A) of debinding the cut green body, and step (4A) of sintering the debound body to yield a sintered body. Subsequently, the method can easily manufacture even a product having a complicated shape, and the invention can provide a method of manufacturing a watch-bracelet component with a wide range of materials to choose from.
Abstract:
A method for producing a sintered body is provided. The method for producing the sintered body comprising: forming a green body by molding a composition for forming a green body into a specified shape to obtain the green body, the composition comprising powder constituted of a metallic material and a binder containing a first resin which is decomposable by ozone; first debinding the green body by exposing the green body to a high ozone content atmosphere to decompose the first resin and remove the decomposed first resin form the green body to obtain a brown body; exposing the thus obtained brown body at least once to a low ozone content atmosphere whose ozone concentration is lower than an ozone concentration of the high ozone content atmosphere to obtain an intermediate brown body; and sintering the intermediate brown body which has been exposed to the low ozone content atmosphere to obtain the sintered body. By using the composition mentioned above, it is possible to safely, easily and cost-effectively produce a metal sintered body having a reduced metal oxide amount and improved properties (dimensional accuracy). Such a sintered body is also provided.
Abstract:
A method of manufacturing a translucent ceramic is provided. The method comprises: mixing a raw powder and an organic binder and kneading them to obtain a compound, the raw powder containing an aluminum oxide powder and a magnesium oxide powder, and the organic binder containing a first organic component and a second organic component; molding the compound in a predetermined shape by an injection molding method to obtain a green body; debinding the organic binder contained in the green body to obtain a brown body; and sintering the brown body to obtain a sintered body of the translucent ceramic. When the softening point of the first organic component is defined as “T1” (° C.) and the softening point of the second organic component is defined as “T2” (° C.), the kneading step is carried out at a temperature in the range of T2 or higher but lower than T1 after the raw powder and the organic binder are preheated at a temperature in the range of T1 to T1+100(° C.). An orthodontic member is also provided.
Abstract:
A metal sintered part; the subject of this invention is produced by the following example processes in order to offer the metal sintered part, which has a high degree of hardness and a superior wear resistance, and, in order to offer the uncomplicated production method. Process 1A: To produce a green body, which is manufactured from a metal powder and a binding material, by the metal injection molding (MIM) method. Process 2A: To conduct the de-binding treatment to the green body. Process 3A: To sinter the de-binding body and obtain the metal sintered part. The metal powder for the production is a self-fluxing alloy, such as a nickel based self-fluxing alloy. The surface Vickers hardness Hv of this product is more than value 500.
Abstract:
A method of manufacturing a sintered compact is disclosed herein. The method comprises the steps of: (1A) producing a green body containing metal powder, for example, by means of metal injection molding (MIM); (2A) compacting the green body by pressing it preferably by means of an isostatic pressing (2A); (3A) debinding the compacted green body; and (4A) sintering the debinded green body to obtain a sintered compact. The green body compacting step may be carried out during or after the debinding step or during the debinding step. Further, a step for performing machine working on the green body may be included.
Abstract:
A resin bonded magnet including a rare earth magnetic powder and an organic resin moulded into a single body having a cylindrical form. The resin bonded magnet satisfies the condition:2 DL/d.sup.2 .gtoreq.1.56where D is the outer diameter of the magnet, d is the inner diameter, and L is the magnet's length. The rare earth magnetic powder has a coercivity between 7 kOe and 12 kOe. The magnetic powder has an average particle size, r, satisfying:1 .mu.m.ltoreq.r.ltoreq.0.1 t(t.ltoreq.1 mm)where t is the thickness of the moulded article.
Abstract:
A highly reliable sintered compact which can be readily and safely produced, and a method for producing such sintered compact are provided. The sintered compact is preferably formed into a heat sink 1 which comprises a heat sink main body 2. The heat sink main body 2 comprises a substrate 3, a plurality of projections 4 integrally formed with the substrate 3 on its heat dissipation surface, and a molded frame 5 integrally formed with the substrate 3 to surround the projections 4. On each corner of the substrate 3 is formed a circular molded hole 6. The opposite surface of the substrate 3 is formed into a contacting surface which is adapted to be in contact with the heat generating semiconductor chip, and this contacting surface is surface treated, for example, by plating. The sintered compact is produced from metal powders, and it comprises at least one metal selected from tungsten and molybdenum and 2 to 50% by weight of silver. The sintered compact further comprises not more than 10% by weight of a transition metal.