摘要:
A method of returning a movable machine element having a flat dog to a zero point includes advancing the movable machine element in the direction of the flat dog, stopping the movable machine element after a changeover signal (S.sub.D) produced by the flat dog is detected, reversing the direction of the movable machine element, moving the movable machine element a first predetermined distance (L) and stopping it after the changeover signal (S.sub.D) is received again, then moving the movable machine element in the opposite direction a second predetermined distance (l) shorter than the first predetermined distance (L) and stopping the movable machine element, thereafter moving the movable machine element at a low velocity and stopping it at an initial one-revolution signal of a servomotor, which operates the movable machine element, after the changeover signal produced by the flat dog is detected.
摘要:
A uniform velocity control method for rotating a first movable element (3) at a uniform velocity in a rectilinear-to-rotational motion converting mechanism, in which a second movable element (2c) is moved along a linear shaft (2a) and the first movable element is rotated in dependence upon rectilinear movement of the second movable element. The uniform velocity control method includes (1) a second step of monitoring a position of the second movable element along the linear shaft; (2) a second step of calculating a traveling velocity of the second movable element, which traveling velocity is for rotating the first movable element at a uniform velocity, in dependence upon the position of the second movable element along the linear shaft; and (3) a third step of moving the second movable element at the calculated traveling velocity to make the rotational velocity of the first movable element uniform.
摘要:
An absolute position detecting system for a servocontrol system which has its operation controlled in accordance with a numerical control program. Resolvers 202 and absolute encoders 110 made rotatable with a servomotor 105, are set at a predetermined revolving ratio so that the absolute positions of operating axes may be detected highly accurately from the revolution outputs of the two. The detecting operations can be performed for the plural operating axes by using one detecting circuit commonly.
摘要:
A scaling method in an automatic welding machine equipped with a robot control unit for controlling a robot grasping a welding torch. The robot control unit obtains subsequent taught positions on the basis of taught position data indicative of primary welding points (P1, . . . Pn)) of a welding workpiece. The scaling method includes computing the direction of a normal vector (N) of the surface of the workpiece (WK) based on position data (Q1, Q2, Q3) indicative of any three points on the surface of the workpiece (WK), and obtaining, by correction, scaling points corresponding to the primary welding points on the basis of the direction of the normal vector N.
摘要:
An acceleration and deceleration system smoothly controls acceleration and deceleration of an electric motor for driving a movable member of a machine tool or a robot. The acceleration and deceleration system has a linear acceleration and deceleration circuit (3) for receiving interpolation data issued from a pulse distributor (5) and effecting a linear acceleration and deceleration computation on the received data, and an exponential acceleration and deceleration circuit (4) for receiving an output signal from the linear acceleration and deceleration circuit (3) and effecting an exponential acceleration and deceleration computation on the output signal, the circuits (3), (4) being connected in series with each other. The exponential acceleration and deceleration circuit (4) reduces abrupt changes of the controlled speed which are a drawback of the linear acceleration and deceleration circuit (3) prevent shocks from being produced when an axis starts moving and is decelerated thereby providing smooth and accurate acceleration and deceleration control.
摘要:
An industrial robot arc control method subjects the position of a working member to circular-arc control by interpolation while controlling the target angle of the working member with respect to a surface to be worked, which working member is mounted on the wrist of an industrial robot. The industrial robot circular arc control method includes obtaining corresponding points (P1, P2 . . . ; Q1, Q2 . . . ;) of the tip and base of the working member (TC) at plural taught points for circular-arc control of the tip of the working member, which is mounted on a wrist (HD) of the robot, finding interpolated points of the tip and base of the working member by interpolation from the corresponding taught points, and obtaining command quantities for the motion axes of the robot from the interpolated points.
摘要:
A safety method in a robot system including at least a robot (1), peripheral equipment (2-5) serviced by the robot, a robot control unit (6) which causes the robot to execute predetermined services for the peripheral equipment, and a teach control panel (9). A door (11) is provided at the entrance to a robot operating zone, and the door is provided with a safety switch (12) for terminating automatic operation of the robot when the robot is in an automatic operating state. When the safety switch is actuated by opening the door, robot motion in the automatic operating state is decelerated and stopped. During the time that the safety switch is in the actuated state, the robot is placed in a playback operation state to enable control that is performed through the teach control panel.
摘要:
A system for setting a tool coordinate system brings directions ( , , ) of respective basic axes of the tool coordinate system into coincidence with directions (X, Y, Z) of basic axes of a robot reference coordinate system. A tool center point (TCP) serves as an origin, and the system causes a robot to memorize metric values on each motion axis of the robot at the moment of coincidence as setting information for setting the tool coordinate system. The system uses this setting information as information for subsequent robot motion. With the present invention, the setting of tool coordinates, which was a troublesome operation in the prior art, can be performed easily and accurately through a simple method.
摘要:
In an absolute position detecting system for a servocontrol system operatively controlled according to a numerical control program or the like, the absolute position of an operating shaft is detected with a high accuracy based on outputs of a resolver 106 and an absolute encoder 110. The resolver 106 and absolute encoder 110 rotate with a servomotor 105 at a prescribed revolution ratio, so that variations in the absolute position of the operating shaft at the time of a malfunction in the servocontrol system can be stabilized quickly.
摘要:
An industrial robot (10) comprising a cylindrical fixed robot body (14), a swivel body (26) mounted on the fixed robot body (14), a robot arm mechanism (60, 64) pivotally joined to the swivel body (26), and a robot wrist (66) connected to the robot arm mechanism is provided with a cable guide member (30). The cable guide member (30) is extended along the outside of the fixed robot body (14) and has a lower end pivotally joined to the fixed robot body (14) by a lower bearing member (42) and an upper end pivotally joined to the swivel body (26) by an upper bearing member (40). The cables (50) of the industrial robot (10) extending from the lower end of the fixed robot body (14) are held by cable holding section (32) formed in the middle portion of the cable guide member (30) and are extended from the upper end of the cable holding member (30) through the swivel body (26) toward the robot arm mechanism.