摘要:
Provided are a catalyst which inhibits light paraffins form being produced in catalytic cracking of heavy hydrocarbons and which effectively produces olefins and a process in which the above catalyst is used to produce olefins from heavy hydrocarbons at a high yield. The catalyst is a catalytic cracking catalyst for catalytically cracking a hydrocarbon raw material, comprising (A) pentasil type zeolite modified with a rare earth element and zirconium and (B) faujasite type zeolite, and the process is a production process for olefin and a fuel oil, comprising bringing a heavy oil containing 50 mass % or more of a hydrocarbon fraction having a boiling point of 180° C. or higher into contact with the catalyst described above to crack it.
摘要:
Provided are a catalyst which inhibits light paraffins form being produced in catalytic cracking of heavy hydrocarbons and which effectively produces olefins and a process in which the above catalyst is used to produce olefins from heavy hydrocarbons at a high yield. The catalyst is a catalytic cracking catalyst for catalytically cracking a hydrocarbon raw material, comprising (A) pentasil type zeolite modified with a rare earth element and zirconium and (B) faujasite type zeolite, and the process is a production process for olefin and a fuel oil, comprising bringing a heavy oil containing 50 mass % or more of a hydrocarbon fraction having a boiling point of 180° C. or higher into contact with the catalyst described above to crack it.
摘要:
In an adsorber for an adsorption type refrigerator of the present invention, aluminum heat exchangers 120, 130 arranged in a casing 110 are provided with films which do not permit moisture to pass therethrough, such as SiO3 films, anodic oxide coating films and several ppm to a hundred and several tens of ppm of inorganic negative ions such as PO43−, SiO32− are added in the water enclosed in the casing.
摘要:
An adsorption module has heat medium pipes through which a fluid flows, a porous heat transferring member, and adsorbent. The porous heat transferring member is a sintered body formed by sintering a metallic material that is in a form of one of powders, particles and fibers, and has pores for allowing an adsorbed medium to pass through. The porous heat transferring member is disposed on peripheries of the heat medium pipes and bonded to outer surfaces of the heat medium pipes by sintering. The adsorbent is disposed in the pores. The porous heat transferring member further has an adsorbed medium passage for allowing the adsorbed medium to pass through. The adsorbed medium passage is located between the heat medium pipes, and extends straight and parallel to axes of the heat medium pipes.
摘要:
A refrigerant recovery system has a refrigerant recovery vessel which is connected to a refrigerant-recovered refrigeration circuit. A gaseous refrigerant in the refrigerant-recovered refrigeration system is sucked into the refrigerant recovery vessel due to the difference between the pressure in the refrigerant-recovered refrigeration circuit and the refrigerant recovery wheel. The refrigerant recovery vessel is cooled by a refrigeration circuit provided in the refrigerant recovery system, so that the sucked gaseous refrigerant is a liquified. to the refrigerant recovery vessel, a recovery tank made of a cartridge type is connected. The liquefied refrigerant from the refrigerant recovery vessel is sent to the tank. When the temperature of the recovery tank is not low enough, the liquefied refrigerant sent into the tank is evaporated and then returns to the refrigerant recovery vessel so that the refrigerant is liquefied in the vessel again. Such processes are repeated so that the temperature of the tank is gradually lowered by the liquified refrigerant sent thereto and hence the liquefied refrigerant is accumulated in the tank.
摘要:
A heat exchanger includes board members layered with each other, and a sintered member. A first passage and a second passage are alternately defined between the layered board members. The sintered member adsorbs or desorbs first fluid flowing through the first passage. Second fluid flowing through the second passage has a pressure higher than that of the first fluid. The sintered member is layered on a first face of the board member defining the first passage. The sintered member is pressurized on the first face of the board member in a direction of layering the board members. All outer periphery of the second passage is sealed.
摘要:
A automatic surveillance camera equipment contains an infrared ray detecting sensor having a plurality of sensing zones and for detecting an intruder within a watching area and transmitting its signal to a control device, a control device for sending a command signal to a camera unit in response to the signal from the infrared ray detecting sensor, a camera unit for supplying a response signal to a camera in response to the command signal from the control device, a camera for synchronizing a strobe and a camera shutter each other by the response signal from the camera unit, automatically shooting, and automatically rewinding a film simultaneously together in a protective case, and is intended to perform photography of an intruder on each of the sensing zones of the infrared sensor when the intruder enters the watching area. An alarm system is directly communicated to the outside through a telephone line to transmit a signal.
摘要:
A cooling medium charge amount detector capable of detecting whether or not an actual amount of a cooling medium is a desired amount in comparison with the amount of the cooling medium necessary for a desired degree of supercooling on an inlet side of an expansion valve in a refrigeration circulation system, without using a sensor or computation means. A cooling medium on the inlet side of an expansion valve 23 in a refrigeration circulation system 20 is allowed to flow into a cooling medium charge amount detector 40. Throttles 41, 42, 43 are disposed in this cooling medium charge amount detector 40, and sight glasses 44, 45, 46 are disposed at both ends of the throttles 41, 42, 43 to detect a gas-liquid condition of the cooling medium. When the cooling medium flows into this cooling medium charge amount detector, the shift of the cooling medium from a liquid condition to a two-phase gas-liquid condition is checked upstream or downstream of any throttle to match the load condition at that time. In this way, a pressure difference proportional to the degree of supercooling can be detected and eventually, whether or not the charge amount of the cooling medium is suitable in the refrigeration circulation system 20 can be detected.
摘要:
The present invention provides an adsorption-type cooling apparatus comprising first, second, third, and fourth adsorption devices filled with a coolant and contain adsorbents which adsorb evaporated coolant and desorb the adsorbed coolant during heating. Adsorption cores provide heat exchange between the adsorbents and a heat medium, and evaporation and condensation cores provide heat exchange between heating medium and the coolant. A cooling device in which heating medium cooled in the evaporation and condensation cores circulates and cools the object of cooling. A heating means supplies a high-temperature heat medium to the first-fourth adsorption devices. A cooling means supplies a low-temperature heat medium which has a temperature lower than that of the high-temperature heat medium to the first-fourth adsorption devices. Also, a switching control means is provided which switches between multiple states.
摘要:
An adsorption module has heat medium pipes through which a fluid flows, a porous heat transferring member, and adsorbent. The porous heat transferring member is a sintered body formed by sintering a metallic material that is in a form of one of powders, particles and fibers, and has pores for allowing an adsorbed medium to pass through. The porous heat transferring member is disposed on peripheries of the heat medium pipes and bonded to outer surfaces of the heat medium pipes by sintering. The adsorbent is disposed in the pores. The porous heat transferring member further has an adsorbed medium passage for allowing the adsorbed medium to pass through. The adsorbed medium passage is located between the heat medium pipes, and extends straight and parallel to axes of the heat medium pipes.