摘要:
Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 μm or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
摘要:
Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 μm or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
摘要:
In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table bonded to the substrate. The table includes bonded diamond grains defining interstitial regions. The table includes an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending therebetween. The table includes a first region extending inwardly from the upper surface and the lateral surface. The first region exhibits a first interstitial region concentration and includes at least one interstitial constituent disposed therein, which may be present in at least a residual amount and includes at least one metal carbonate and/or at least one metal oxide. The table includes a second bonding region adjacent to the substrate that extends inwardly from the back surface. The second bonding region exhibits a second interstitial region concentration that is greater than the first interstitial region concentration and includes a metallic infiltrant therein.
摘要:
Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, polycrystalline diamond compact (“PDC”) includes a PCD table having a maximum thickness. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. The PDC includes a substrate having an interfacial surface that is bonded to the PCD table. The interfacial surface exhibits a substantially planar topography. Other embodiments are directed to methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
摘要:
Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, polycrystalline diamond compact (“PDC”) includes a PCD table having a maximum thickness. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. The PDC includes a substrate having an interfacial surface that is bonded to the PCD table. The interfacial surface exhibits a substantially planar topography. Other embodiments are directed to methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
摘要:
In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table bonded to the substrate. The table includes bonded diamond grains defining interstitial regions. The table includes an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending therebetween. The table includes a first region extending inwardly from the upper surface and the lateral surface. The first region exhibits a first interstitial region concentration and includes at least one interstitial constituent disposed therein, which may be present in at least a residual amount and includes at least one metal carbonate and/or at least one metal oxide. The table includes a second bonding region adjacent to the substrate that extends inwardly from the back surface. The second bonding region exhibits a second interstitial region concentration that is greater than the first interstitial region concentration and includes a metallic infiltrant therein.
摘要:
Embodiments of the invention relate to electrical impedance tomography testing systems and methods for non-destructively testing a polycrystalline diamond element (e.g., a polycrystalline diamond table of a polycrystalline diamond compact or a freestanding polycrystalline diamond table) using electrical impedance tomography to locate one or more high-electrical-conductivity regions (e.g., one or more regions of poorly sintered diamond crystals and/or high-metal-solvent catalyst content) and/or one or more low-electrical-conductivity regions (e.g., porosity and/or cracks) in the tested polycrystalline diamond element. Further embodiments relate to a rotary drill bit including at least one polycrystalline diamond compact that has been selectively positioned so that one or more high-electrical-conductivity regions of a polycrystalline diamond table thereof identified using the non-destructive testing systems and methods disclosed herein are not positioned to engage a subterranean formation during drilling.
摘要:
Embodiments of methods are disclosed for characterizing a tested polycrystalline diamond (“PCD”) element, such as a PDC cutting element. In an embodiment, a method for characterizing a tested PCD element is disclosed. An initial volume of a PCD element is measured using a coordinate measuring machine (“CMM”). A workpiece is cut with the PCD element so that the PCD element develops a wear flat. A post-cut volume of the PCD element is measured after cutting the workpiece using the CMM. A wear volume of the PCD element is determined at least partially based on the post-cut volume and the initial volume of the PCD element.