Abstract:
In an embodiment, a method of fabricating a polycrystalline diamond compact (“PDC”) includes forming a polycrystalline diamond (“PCD”) table in the presence of a metal-solvent catalyst in a first high-pressure/high-temperature (“HPHT”) process. The PCD table includes bonded diamond grains defining interstitial regions, with the metal-solvent catalyst disposed therein. The method includes at least partially leaching the PCD table to remove at least a portion of the metal-solvent catalyst therefrom. The method includes subjecting the at least partially leached PCD table and a substrate to a second HPHT process under diamond-stable temperature-pressure conditions to partially infiltrate the at least partially leached PCD table with an infiltrant. A maximum temperature (T), a total process time (t), and a maximum pressure (P) of the second HPHT process are chosen so that β is about 2° Celsius·hours/gigapascals (“° C.·h/GPa”) to about 325° C.·h/GPa, with β represented as β=T·t/P.
Abstract:
Embodiments of the invention relate to polycrystalline diamond compact (“PDC”) including a polycrystalline diamond (“PCD”) table that bonded to a cobalt-nickel alloy cemented carbide substrate. The cobalt-nickel alloy cemented carbide substrate provides both erosion resistance and corrosion resistance to the cemented carbide substrate. In an embodiment, a PDC includes a cemented carbide substrate including cobalt-nickel alloy cementing constituent. The PDC further includes a PCD table bonded to the cemented carbide substrate.
Abstract:
Embodiments relate to polycrystalline diamond compacts (“PDCs”) and methods of manufacturing such PDCs in which an at least partially leached polycrystalline diamond (“PCD”) table is infiltrated with a low viscosity cobalt-based alloy infiltrant. In an embodiment, a method includes forming a PCD table in the presence of a metal-solvent catalyst in a first high-pressure/high-temperature (“HPHT”) process. The method includes at least partially leaching the PCD table to remove at least a portion of the metal-solvent catalyst therefrom to form an at least partially leached PCD table. The method includes subjecting the at least partially leached PCD table and a substrate to a second HPHT process effective to at least partially infiltrate the at least partially leached PCD table with a cobalt-based alloy infiltrant having a composition at or near a eutectic composition of the cobalt-based alloy infiltrant.
Abstract:
In an embodiment, a polycrystalline diamond compact (“PDC”) comprises a cemented carbide substrate including a first cemented carbide portion exhibiting a first concentration of chromium carbide and a second cemented carbide portion bonded to the first cemented carbide portion and exhibiting a second concentration of chromium carbide that is greater than the first concentration. The PDC further comprises a polycrystalline diamond (“PCD”) table bonded to the first cemented carbide portion. The PCD table includes a plurality of bonded diamond grains exhibiting diamond-to-diamond bonding therebetween, with the plurality of bonded diamond grains defining a plurality of interstitial regions. The PCD table includes chromium present in a concentration less than about 0.25 weight %.
Abstract:
Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 μm or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
Abstract:
Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) comprising a polycrystalline diamond (“PCD”) table including at least a portion having aluminum carbide disposed interstitially between bonded-together diamond grains thereof, and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate, and a PCD table bonded to the substrate. The PCD table includes a plurality of bonded-together diamond grains defining a plurality of interstitial regions. The PCD table further includes aluminum carbide disposed in at least a portion of the plurality of interstitial regions.
Abstract:
In an embodiment, a method of non-destructively testing a polycrystalline diamond (“PCD”) element includes providing a PCD element including a plurality of bonded diamond grains defining a plurality of interstitial regions, at least a portion of the plurality of interstitial regions including one or more interstitial constituents disposed therein. The method further includes exposing the PCD element to neutron radiation from a neutron radiation source, receiving a portion of the neutron radiation that passes through the PCD element, and determining at least one characteristic of the PCD element at least partially based on the portion of the neutron radiation received. For example, the at least one characteristic may be the presence and distribution of metal-solvent catalyst, residual metal-solvent catalyst, an infiltrant, residual infiltrant, or other interstitial constituents within a PCD element.
Abstract:
The disclosure provides a super abrasive element containing a substantially catalyst-free thermally stable polycrystalline diamond (TSP) body having pores and a contact surface, a base adjacent the contact surface of the TSP body; and an infiltrant material infiltrated in the base and in the pores of the TSP body at the contact surface. The disclosure additionally provides earth-boring drill bits and other devices containing such super abrasive elements. The disclosure further provides methods and mold assemblies for forming such super abrasive elements via infiltration and hot press methods.
Abstract:
Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 μm or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
Abstract:
The disclosure provides a super abrasive element containing a substantially catalyst-free thermally stable polycrystalline diamond (TSP) body having pores and a contact surface, a base adjacent the contact surface of the TSP body; and an infiltrant material infiltrated in the base and in the pores of the TSP body at the contact surface. The disclosure additionally provides earth-boring drill bits and other devices containing such super abrasive elements. The disclosure further provides methods and mold assemblies for forming such super abrasive elements via infiltration and hot press methods.