摘要:
An electronically addressable display comprises a substrate, at least one polarization-type, electrical field switchable molecular colorant associated with the substrate, and an addressing device mounted for selectively switching the at least one molecular colorant between at least two visually distinguishable states. Electronic devices including the electronically addressable displays and methods of manufacturing the electronically addressable display are also disclosed.
摘要:
The present invention is drawn toward a chemical or biological sensor that can comprise a semi-conducting nanowire and a chemical or biological sensing molecule tethered to the semi-conducting nanowire through a spacer group including a hydrophilic reactive group. In one embodiment, the semi-conducting nanowire can be part of an array of like or similar semi-conducting nanowires. Electrical leads can provide an electrical current to the array, and a signal measurement apparatus can be electrically coupled to the array, and can be configured for detecting changes in the electrical current of the array.
摘要:
A bistable molecular switch can have a highly conjugated first state and a less conjugated second state. The bistable molecular switch can be configured such that application of an electric field reversibly switches the molecular switch from the first state to the second state. Additionally, the bistable molecular switch can include a hydrophobic moiety and a hydrophilic moiety. Such molecular switches can be incorporated into a thin film as part of a molecular switch system which can include a layer of molecular switches between a first electrode layer and a second electrode layer. The layer of molecular switches can have substantially all of the molecular switches having their hydrophilic moiety oriented in the same direction. An electric potential can then be induced between the first and second electrode layers sufficient to switch the molecular switches from the first or second state to the second or first state, respectively. The first and second states have differences in resistivity which are suitable for use in electronic applications. Thin films containing these oriented molecular switches can be used to produce a wide variety of electronic components such as ROM memory and the like.
摘要:
The invention described herein includes a molecular switch, comprising: a donor subunit; an acceptor subunit; and an aromatic bridging subunit comprising one or more bridging groups for bonding the donor subunit to the aromatic bridging subunit and for bonding the acceptor subunit to the aromatic bridging subunit wherein the aromatic bridging subunit is conformable in a manner effective for polarizing and de-polarizing the molecular switch at a low electric field voltage.
摘要:
The present invention is drawn toward a chemical or biological sensor that can comprise a semi-conducting nanowire and a chemical or biological sensing molecule tethered to the semi-conducting nanowire through a spacer group including a hydrophilic reactive group. In one embodiment, the semi-conducting nanowire can be part of an array of like or similar semi-conducting nanowires. Electrical leads can provide an electrical current to the array, and a signal measurement apparatus can be electrically coupled to the array, and can be configured for detecting changes in the electrical current of the array.
摘要:
A sensor array for sensing at least one of chemical moieties and biological moieties is provided. The sensor array comprises a plurality of working electrodes electrically associated with a reference electrode, each working electrode in combination with the reference electrode forming a transducer. Each working electrode is provided with a coating of a sensing element comprised of an ionizable moiety and a functional group sensitive to one of the chemical and/or biological moieties.
摘要:
Molecular systems are provided for electric field activated switches, such as optical switches. The molecular system has an electric field induced band gap change that occurs via one of the following mechanisms: (1) molecular conformation change; (2) change of extended conjugation via chemical bonding change to change the band gap; or (3) molecular folding or stretching. Nanometer-scale reversible optical switches are thus provided that can be assembled easily to make a variety of optical devices, including optical displays.
摘要:
Ceramic pigment-based, chemically-modified porous coatings can be used for enhancing image permanence of ink-jet image printing. Specifically, a porous coated media sheet, comprising a media substrate, having a porous coating coated thereon comprising a modified ceramic pigment including a fixer group and a stabilizer group, each covalently attached to the ceramic pigment is disclosed. Additionally, a method and system for preparing permanent ink-jet images is also provided.
摘要:
Ceramic pigment-based, chemically-modified porous coatings can be used for enhancing image permanence of ink-jet image printing. Specifically, a porous coated media sheet, comprising a media substrate, having a porous coating coated thereon comprising a modified ceramic pigment including a fixer group and a stabilizer group, each covalently attached to the ceramic pigment is disclosed. Additionally, a method and system for preparing permanent ink-jet images is also provided.
摘要:
A microfluidic device (100) for controllably moving a material of interest (102) includes a holding cavity (108) configured to hold the material of interest (102) and at least one actuator (120) configured to induce an activation material (116) to expand or contract. Expansion of the activation material (116) decreases the size of the holding cavity (108) to cause the material of interest (102) to be released from the holding cavity (108) and contraction of the activation material (116) increases the size of the holding cavity (108) to cause the material of interest (102) to be received into the holding cavity (108). The at least one actuator (120) is operable at multiple levels between a zero induction level to a maximum induction level on the activation material (116) to thereby controllably expand or contract the holding cavity (108) to release or receive a specified volume of the material of interest (102).