摘要:
Medical image data is utilized, physical values are assigned to body parts based on image information, and the target organs are separated from the image data to prepare a 3D biodata model to thereby realize a data model unique to a patient, having an internal structure, and enabling dynamic simulation of a live body. The same target part of a body is captured by CT and MRI to obtain medical images. Sets of pairs of CT images and MRI images are set, a plurality of features showing the same locations are selected and set from the sets of CT images and MRI images, a conversion coefficient between the CT images and MRI images is obtained, and this conversion coefficient is used to rearrange the MRI images by projection transforms and linear interpolation, combine them with the contours of the CT images, and correct their positions in the contours. Further, the images are used to prepare a 3D data model.
摘要:
Medical image data is utilized, physical values are assigned to body parts based on image information, and the target organs are separated from the image data to prepare a 3D biodata model to thereby realize a data model unique to a patient, having an internal structure, and enabling dynamic simulation of a live body. The same target part of a body is captured by CT and MRI to obtain medical images. Sets of pairs of CT images and MRI images are set, a plurality of features showing the same locations are selected and set from the sets of CT images and MRI images, a conversion coefficient between the CT images and MRI images is obtained, and this conversion coefficient is used to rearrange the MRI images by projection transforms and linear interpolation, combine them with the contours of the CT images, and correct their positions in the contours. Further, the images are used to prepare a 3D data model.
摘要:
The invention is directed to the provision of a method for generating a model for a preoperative simulation, wherein the method includes: a first step of constructing volume data for necessary organs by acquiring geometrical information from a medical image; a second step of manipulating the volume data to reposition and reorient an operator-designated organ to achieve a position and orientation appropriate for a surgical operation; a third step of generating a blood-vessel model, depicting a blood vessel to be joined to the designated organ, so as to match the position and orientation of the designated organ; a fourth step of generating volume data by forming a fat model of prescribed thickness around a prescribed organ contained in the earlier constructed volume data, after the blood-vessel model has been joined to the designated organ; a fifth step of thereafter meshing the organ represented by the generated volume data; a sixth step of manipulating a template model of a prescribed shape by using a template, and arranging the template model around the generated blood-vessel model; and a seventh step of generating a line-segment model based on the thus arranged template model.
摘要:
The invention is directed to the provision of a method for generating a model for a preoperative simulation, wherein the method includes: a first step of constructing volume data for necessary organs by acquiring geometrical information from a medical image; a second step of manipulating the volume data to reposition and reorient an operator-designated organ to achieve a position and orientation appropriate for a surgical operation; a third step of generating a blood-vessel model, depicting a blood vessel to be joined to the designated organ, so as to match the position and orientation of the designated organ; a fourth step of generating volume data by forming a fat model of prescribed thickness around a prescribed organ contained in the earlier constructed volume data, after the blood-vessel model has been joined to the designated organ; a fifth step of thereafter meshing the organ represented by the generated volume data; a sixth step of manipulating a template model of a prescribed shape by using a template, and arranging the template model around the generated blood-vessel model; and a seventh step of generating a line-segment model based on the thus arranged template model.
摘要:
A surgical simulation model generating method includes: a first process in which a computing unit acquires geometrical information of an organ from a medical image stored in a storage unit, including an image of the organ, and generates volume data for the organ; a second process in which, after the first process, the computing unit forms nodal points by meshing the organ represented by the generated volume data; a third process in which the computing unit generates a simulated membrane that covers the organ represented by the volume data meshed in the second process; and a fourth process in which the computing unit generates a simulated organ by drawing an imaginary line so as to extend from each nodal point formed on a surface of the organ represented by the volume data meshed in the second process in a direction that intersects the simulated membrane and thereby forming a membrane nodal point at a point where the imaginary line intersects the simulated membrane generated in the third process, and by arranging on each imaginary line an imaginary inter-membrane spring that connects between the nodal point formed on the surface of the organ and the membrane nodal point, while also arranging an in-plane spring that connects between adjacent membrane nodal points on the simulated membrane.
摘要:
A surgical simulation model generating method includes: a first process in which a computing unit acquires geometrical information of an organ from a medical image stored in a storage unit, including an image of the organ, and generates volume data for the organ; a second process in which, after the first process, the computing unit forms nodal points by meshing the organ represented by the generated volume data; a third process in which the computing unit generates a simulated membrane that covers the organ represented by the volume data meshed in the second process; and a fourth process in which the computing unit generates a simulated organ by drawing an imaginary line so as to extend from each nodal point formed on a surface of the organ represented by the volume data meshed in the second process in a direction that intersects the simulated membrane and thereby forming a membrane nodal point at a point where the imaginary line intersects the simulated membrane generated in the third process, and by arranging on each imaginary line an imaginary inter-membrane spring that connects between the nodal point formed on the surface of the organ and the membrane nodal point, while also arranging an in-plane spring that connects between adjacent membrane nodal points on the simulated membrane.
摘要:
A functional droplet coating apparatus includes a functional droplet discharge head for discharging a functional droplet, a stage for setting thereon a board to be coated with the functional droplet discharged from the functional droplet discharge head, and a drying unit for covering one or entire part of the board set on the stage, the drying unit for drying the functional droplet ejected from the functional droplet discharge head.