摘要:
Medical image data is utilized, physical values are assigned to body parts based on image information, and the target organs are separated from the image data to prepare a 3D biodata model to thereby realize a data model unique to a patient, having an internal structure, and enabling dynamic simulation of a live body. The same target part of a body is captured by CT and MRI to obtain medical images. Sets of pairs of CT images and MRI images are set, a plurality of features showing the same locations are selected and set from the sets of CT images and MRI images, a conversion coefficient between the CT images and MRI images is obtained, and this conversion coefficient is used to rearrange the MRI images by projection transforms and linear interpolation, combine them with the contours of the CT images, and correct their positions in the contours. Further, the images are used to prepare a 3D data model.
摘要:
Medical image data is utilized, physical values are assigned to body parts based on image information, and the target organs are separated from the image data to prepare a 3D biodata model to thereby realize a data model unique to a patient, having an internal structure, and enabling dynamic simulation of a live body. The same target part of a body is captured by CT and MRI to obtain medical images. Sets of pairs of CT images and MRI images are set, a plurality of features showing the same locations are selected and set from the sets of CT images and MRI images, a conversion coefficient between the CT images and MRI images is obtained, and this conversion coefficient is used to rearrange the MRI images by projection transforms and linear interpolation, combine them with the contours of the CT images, and correct their positions in the contours. Further, the images are used to prepare a 3D data model.
摘要:
The invention is directed to the provision of a method for generating a model for a preoperative simulation, wherein the method includes: a first step of constructing volume data for necessary organs by acquiring geometrical information from a medical image; a second step of manipulating the volume data to reposition and reorient an operator-designated organ to achieve a position and orientation appropriate for a surgical operation; a third step of generating a blood-vessel model, depicting a blood vessel to be joined to the designated organ, so as to match the position and orientation of the designated organ; a fourth step of generating volume data by forming a fat model of prescribed thickness around a prescribed organ contained in the earlier constructed volume data, after the blood-vessel model has been joined to the designated organ; a fifth step of thereafter meshing the organ represented by the generated volume data; a sixth step of manipulating a template model of a prescribed shape by using a template, and arranging the template model around the generated blood-vessel model; and a seventh step of generating a line-segment model based on the thus arranged template model.
摘要:
The invention is directed to the provision of a method for generating a model for a preoperative simulation, wherein the method includes: a first step of constructing volume data for necessary organs by acquiring geometrical information from a medical image; a second step of manipulating the volume data to reposition and reorient an operator-designated organ to achieve a position and orientation appropriate for a surgical operation; a third step of generating a blood-vessel model, depicting a blood vessel to be joined to the designated organ, so as to match the position and orientation of the designated organ; a fourth step of generating volume data by forming a fat model of prescribed thickness around a prescribed organ contained in the earlier constructed volume data, after the blood-vessel model has been joined to the designated organ; a fifth step of thereafter meshing the organ represented by the generated volume data; a sixth step of manipulating a template model of a prescribed shape by using a template, and arranging the template model around the generated blood-vessel model; and a seventh step of generating a line-segment model based on the thus arranged template model.
摘要:
There is provided a polycrystalline aluminum nitride substrate that is effective in growing a GaN crystal. The polycrystalline aluminum nitride base material for use as a substrate material for grain growth of GAN-base semiconductors, contains 1 to 10% by weight of a sintering aid component and has a thermal conductivity of not less than 150 W/m·K, the substrate having a surface free from recesses having a maximum diameter of more than 200 μm.
摘要:
There is provided a polycrystalline aluminum nitride substrate that is effective in growing a GaN crystal. The polycrystalline aluminum nitride base material for use as a substrate material for grain growth of GAN-base semiconductors, contains 1 to 10% by weight of a sintering aid component and has a thermal conductivity of not less than 150 W/m·K, the substrate having a surface free from recesses having a maximum diameter of more than 200 μm.