摘要:
A controller receives an M-bit input and generates, in response, an S-bit upper range binary data feeding S-bit high range DAC and an R-bit lower range data feeding an R-bit low range DAC. The controller detects transition points in the M-bit input and in response, adds a transition data to the S-bit data equal to at least one least significant bit of the S-bit data and subtracts a value from the R-bit data equal to the transition data. The transition points and the transition data are detected and added at points avoiding such transitions at a full scale value of the R-bit data.
摘要:
A controller receives an M-bit input and generates, in response, an S-bit upper range binary data feeding S-bit high range DAC and an R-bit lower range data feeding an R-bit low range DAC. The controller detects transition points in the M-bit input and in response, adds a transition data to the S-bit data equal to at least one least significant bit of the S-bit data and subtracts a value from the R-bit data equal to the transition data. The transition points and the transition data are detected and added at points avoiding such transitions at a full scale value of the R-bit data.
摘要:
A data alignment logic cell properly aligns the individual data units (e.g., bytes) in a block of data that is transferred in a multiple bit bus such that the data units in the block are transferred to desired lanes of the bus. The data alignment logic cell includes a gathering unit, which aligns the data units into a fixed, justified arrangement in the bus, and a scattering unit, which receives the data units from the gathering unit and realigns them to the desired lanes. Both the gathering and scattering units contain registers for temporarily storing certain of the data units and multiplexers for transferring the data units between the lanes of the bus, the state of the multiplexers being determined by signals from control units.
摘要:
A voltage comparator for comparing a first input voltage to a second input voltage includes a first transistor having a gate to which the first input voltage is applied and a second transistor having a gate to which the second input voltage is applied. Third and fourth transistors, coupled to the first and second transistors respectively, each conduct a first current in response to a first reference voltage being applied to a gate of each transistor. A fifth transistor is coupled to the first and second transistors and has a gate to which a second reference voltage is applied to maintain a sum of currents conducted by the first and second transistors equal to a second current. A reference generation circuit is coupled to the third, fourth and fifth transistors and is configured to generate the first and second reference voltages having magnitudes which set the second current equal to twice the first current. A first current difference amplifier has an input coupled to the first and third transistors and is configured to generate one of a first, second and third output voltage levels in response to a sourcing, zero or sinking current, respectively, being received at its input.
摘要:
A circuit for modulating an N-phase first waveform having a frequency F.sub.O with an N-phase second waveform having a frequency F.sub.M. The circuit includes N number of limited swing driver circuits. Each limited swing driver circuit has generator means for generating one phase of a third waveform in response to one phase of the first waveform so that the third waveform has a frequency F.sub.O and a voltage swing that is less than a voltage swing of the first waveform. The circuit also includes N number of multiplier circuits. Each multiplier circuit is coupled to one of the limited swing driver circuits and has multiply means for multiplying one phase of the third waveform with one phase of the second waveform and for generating first and second currents having a difference which is proportional to a product of the one phase of the third waveform and the one phase of the second waveform. A load circuit is coupled to the multiplier circuits and has a first node into which the first currents generated by each of the multiplier circuits are summed together to form a first summation current and a second node into which the second currents generated by each of the multiplier circuits are summed together to form a second summation current. The load circuit has a comparing stage for comparing which of the first and second summation currents is larger and for generating a first clock signal having a frequency approximately equal to a frequency of a change in magnitude of the first and second summation currents. A method of modulating an N-phase first waveform having a frequency F.sub.O with an N-phase second waveform having a frequency F.sub.M is also disclosed.