摘要:
An embodiment of the invention provides a MEMS cantilever strain sensor. Capacitor plates in a MEMS device of the invention are carried on cantilevered opposing micro-scale plates separated by a micro-scale gap under an unstrained condition. At least one of the micro-scale plates may be attached to a substrate or forms a substrate, which may be part of a monitored system. When a load is applied to the substrate, distal ends of the opposing cantilevered micro-scale plates become further separated, resulting in a change of capacitance. The change of capacitance is proportional to a load and therefore is an indication of the strain. Electrodes may be integrated into the strain sensor to provide a connection to measurement circuitry, for example. Sensors of the invention also provide for telemetric communication using radio frequency (RF) energy and can be interrogated without a power supply to the sensor.
摘要:
An embodiment of the invention provides a MEMS cantilever strain sensor. Capacitor plates in a MEMS device of the invention are carried on cantilevered opposing micro-scale plates separated by a micro-scale gap under an unstrained condition. At least one of the micro-scale plates may be attached to a substrate or forms a substrate, which may be part of a monitored system. When a load is applied to the substrate, distal ends of the opposing cantilevered micro-scale plates become further separated, resulting in a change of capacitance. The change of capacitance is proportional to a load and therefore is an indication of the strain. Electrodes may be integrated into the strain sensor to provide a connection to measurement circuitry, for example. Sensors of the invention also provide for telemetric communication using radio frequency (RF) energy and can be interrogated without a power supply to the sensor.
摘要:
The present invention provides a system 10 for measuring and remotely monitoring strain in an element 1 having a strain sensor 20, a telemetry circuit 40 for transmitting strain data to a remote location, and a reader module 60 for transmitting energy to the telemetry circuit and receiving said data.
摘要:
An interchangeable preconcentrator assembly comprises an outer housing and an inner housing defining a chamber. A biased urging member is held at least partially within the outer housing and slidably biased toward a surface of the inner housing. When the biased urging member is at least partially retracted, a space is defined between the urging member and the surface of the inner housing for accommodating at least one preconcentrator chip. A continuous fluid flow path is defined through the outer housing and through the space. The interchangeable preconcentrator assembly may further comprise at least one modular preconcentrator carriage.
摘要:
An interchangeable preconcentrator assembly comprises an outer housing and an inner housing defining a chamber. A biased urging member is held at least partially within the outer housing and slidably biased toward a surface of the inner housing. When the biased urging member is at least partially retracted, a space is defined between the urging member and the surface of the inner housing for accommodating at least one preconcentrator chip. A continuous fluid flow path is defined through the outer housing and through the space. The interchangeable preconcentrator assembly may further comprise at least one modular preconcentrator carriage.
摘要:
An analog-to-digital converter (ADC) is provided. The ADC includes a variable oscillator, a frequency divider, a clock circuit, and a counter. The variable oscillator is coupled to a sensor and configured to generate an oscillating signal based on a measurement generated by the sensor. The frequency divider is coupled to the variable oscillator and configured to divide a frequency of the oscillating signal. The clock circuit is configured to generate a clock signal at a defined frequency. The counter is coupled to the frequency divider and to the clock and is configured to generate a bit stream representative of a first number of periods of the clock signal during a second number of periods of the divided oscillating signal.
摘要:
An analog-to-digital converter (ADC) is provided. The ADC includes a variable oscillator, a frequency divider, a clock circuit, and a counter. The variable oscillator is coupled to a sensor and configured to generate an oscillating signal based on a measurement generated by the sensor. The frequency divider is coupled to the variable oscillator and configured to divide a frequency of the oscillating signal. The clock circuit is configured to generate a clock signal at a defined frequency. The counter is coupled to the frequency divider and to the clock and is configured to generate a bit stream representative of a first number of periods of the clock signal during a second number of periods of the divided oscillating signal.
摘要:
A large volume preconcentrator device for concentrating analytes. A housing accepts an analyte vapor flow, and a plurality of collection surfaces are disposed within the housing. A selectively actuatable heater is disposed on each of the plurality of collection surfaces. At least one selectively actuable damper is disposed within the housing for selectively restricting a collection flow.