摘要:
A semiconductor device includes an active region defined in a semiconductor substrate, and gate electrodes crossing over the active region. Source/drain regions are defined in the active region on two sides of the gate electrode. At least one of the source/drain regions is a field effect source/drain region generated by a fringe field of the gate. The other source/drain region is a PN-junction source/drain region having different impurity fields and different conductivity than the substrate. At least one of the source/drain regions is a field effect source/drain region. Accordingly, a short channel effect is reduced or eliminated in the device.
摘要:
A semiconductor device includes an active region defined in a semiconductor substrate, and gate electrodes crossing over the active region. Source/drain regions are defined in the active region on two sides of the gate electrode. At least one of the source/drain regions is a field effect source/drain region generated by a fringe field of the gate. The other source/drain region is a PN-junction source/drain region having different impurity fields and different conductivity than the substrate. At least one of the source/drain regions is a field effect source/drain region. Accordingly, a short channel effect is reduced or eliminated in the device.
摘要:
A high integration memory array architecture of the present invention includes a memory cell array including memory cells arranged in a predetermined configuration, and selection transistors having different threshold voltages so as to select a memory string of the memory cell array. By applying a proper bias voltage to the selection transistors, specific memory strings can be selected, so that operations for the memory array can be performed without intervening with adjacent memory cells.
摘要:
A NAND flash memory having a cell string structure includes a wordline configured to transfer a wordline voltage to a memory cell. A selection line is configured to transfer a selection voltage to a selection transistor connected to the memory cell and at least one shielding line is interposed between the wordline and the selection line and is operable to reduce capacitance-coupling between the wordline and the selection line during a programming operation.
摘要:
A semiconductor device includes an active region defined in a semiconductor substrate, and gate electrodes crossing over the active region. Source/drain regions are defined in the active region on two sides of the gate electrode. At least one of the source/drain regions is a field effect source/drain region generated by a fringe field of the gate. The other source/drain region is a PN-junction source/drain region having different impurity fields and different conductivity than the substrate. At least one of the source/drain regions is a field effect source/drain region. Accordingly, a short channel effect is reduced or eliminated in the device.
摘要:
A high integration memory array architecture of the present invention includes a memory cell array including memory cells arranged in a predetermined configuration, and selection transistors having different threshold voltages so as to select a memory string of the memory cell array. By applying a proper bias voltage to the selection transistors, specific memory strings can be selected, so that operations for the memory array can be performed without intervening with adjacent memory cells.
摘要:
A NAND flash memory device includes a control circuit configured to apply, during a program operation, a first word line voltage to non-selected ones of a plurality of serially-connected memory cells, a second word line voltage greater than the first word line voltage to a selected one of the plurality of memory cells, and a third word line voltage lower than the first word line voltage to a dummy memory cell connected in series with the plurality of memory cells. In other embodiments, a control circuit is configured to program a dummy memory cell before and/or after each erase operation on a plurality of memory cells connected in series therewith. In still other embodiments, a control circuit is configured to forego erasure of a dummy memory cell while erasing a plurality of memory cells connected in series therewith.
摘要:
A semiconductor device includes an active region defined in a semiconductor substrate, and gate electrodes crossing over the active region. Source/drain regions are defined in the active region on two sides of the gate electrode. At least one of the source/drain regions is a field effect source/drain region generated by a fringe field of the gate. The other source/drain region is a PN-junction source/drain region having different impurity fields and different conductivity than the substrate. At least one of the source/drain regions is a field effect source/drain region. Accordingly, a short channel effect is reduced or eliminated in the device.
摘要:
A NAND-type non-volatile semiconductor memory device includes a gate insulating layer on an active region of a semiconductor substrate, first and second select gate structures on the active region, and a memory gate structure therebetween. The first and second select gate structures respectively include a plurality of select gate patterns, and the memory gate structure includes a plurality of storage gate patterns. The gate insulating layer includes a plurality of openings therein exposing portions of the active region between ones of the plurality of select gate patterns of the first and second select gate structures. The device may further include impurity regions in portions of the active region between the gate patterns, and halo regions adjacent ones of the impurity regions in the portions of the active region exposed by the openings in the gate insulating layer. Related fabrication methods are also discussed.
摘要:
Disclosed herein is a charge trap-type 3-level non-volatile semiconductor memory device and method of driving the same. The charge trap-type 3-level non-volatile semiconductor memory device includes a memory array including a plurality of memory elements, each capable of storing data in at least two charge trap regions depending on the direction of current flow, and a page buffer driven to map three data bits to threshold voltage groups of the two charge trap regions. The charge trap-type non-volatile semiconductor memory device has charge trap regions each storing 1.5 bits of data. That is, a single memory element has charge trap regions for storing 3 bits of data, thereby improving device integration while maintaining a high operating speed during programming and reading operations.