摘要:
Methods and kits for delivering pharmaceutical agents to the adventitia and other regions outside the external elastic lamina (EEL) surrounding a blood vessel utilize a catheter having a needle. The needle is positioned in up to 5 mm beyond the EEL and delivers an amount of pharmaceutical agent sufficient to circumferentially permeate around the blood vessel and, in many cases, extend longitudinally and radially along the blood vessel. Confirmation that a delivery aperture of the needle lies beyond the EEL may be required before delivering the pharmaceutical agent.
摘要:
Methods and kits for delivering pharmaceutical agents to the adventitia and other regions outside the external elastic lamina (EEL) surrounding a blood vessel utilize a catheter having a needle. The needle is positioned in up to 5 mm beyond the EEL and delivers an amount of pharmaceutical agent sufficient to circumferentially permeate around the blood vessel and, in many cases, extend longitudinally and radially along the blood vessel. Confirmation that a delivery aperture of the needle lies beyond the EEL may be required before delivering the pharmaceutical agent.
摘要:
Methods and kits for delivering pharmaceutical agents to the adventitia and other regions outside the external elastic lamina (EEL) surrounding a blood vessel utilize a catheter having a needle. The needle is positioned in up to 5 mm beyond the EEL and delivers an amount of pharmaceutical agent sufficient to circumferentially permeate around the blood vessel and, in many cases, extend longitudinally and radially along the blood vessel. Confirmation that a delivery aperture of the needle lies beyond the EEL may be required before delivering the pharmaceutical agent.
摘要:
Methods and systems for regenerating damaged tissue rely on direct injection of selected therapeutic cells into a tissue at or near the site of tissue damage. Direct injection is accomplished using an intravascular catheter having a deployable needle, and injection is usually targeted into the adventitial and peri-adventitial tissues surrounding the blood vessel from which the needle is deployed.
摘要:
Methods and systems for regenerating damaged tissue rely on direct injection of selected therapeutic cells into a tissue at or near the site of tissue damage. Direct injection is accomplished using an intravascular catheter having a deployable needle, and injection is usually targeted into the adventitial and peri-adventitial tissues surrounding the blood vessel from which the needle is deployed.
摘要:
Methods, systems, and apparatus for delivering drugs and other substances to extraluminal tissue surrounding a body lumen are described. Catheters are used to inject the drug or other substance intraluminally into tissue surrounding a stent or other luminal scaffold. The drug or other substance is injected in an amount sufficient to cause diffusion back through the tissue to the stent. An absorptive structure, reservoir, or the like, on the stent then absorbs excess drug as it passes from the luminal tissue. In this way, the stent is first loaded with drug. After time, as the stent becomes fully loaded and the tissue becomes depleted, drug will be begin to flow back from the stent into the surrounding luminal tissue.
摘要:
A device for interventional surgical or medical procedures is presented. The device is generally in the form of a balloon and is used to position itself or other working elements up against or through lumen walls in the body. The balloon is comprised of at least two materials of different elastic modulus, which allows for a flexible but relatively non-distensible, unfolding component of the balloon as well as an elastomeric, inflatable component of the balloon. The elastomeric component is fixedly attached to the flexible but relatively non-distensible component and together they form a pressure vessel that can be inflated within the lumens of the body.
摘要:
A method of interventional surgery is described. The method may include inserting an actuator within a body of a vascularized organism and positioning the actuator adjacent a target region within a vessel of the body. The actuator is operated to cause a needle thereof to move in a substantially perpendicular direction relative to a wall of the vessel to produce an opening therein. A therapeutic or diagnostic agent may be delivered by the needle to the target region via the opening in the vessel wall.
摘要:
An actuator for an interventional surgical procedure is described. The actuator may include an actuator body having a distal end and a proximal end. A central expandable section is located between the distal end and the proximal end. The expandable section is operable between an unactuated condition in which the expandable section is in a furled state and an actuated condition in which the expandable section is in an unfurled state. A needle is located at the expandable section. The needle is moveable in an approximately perpendicular direction relative to a central longitudinal axis of the actuator body from a position within the actuator body to a position outside of the actuator body.
摘要:
Sympathetic nerves run through the adventitia surrounding renal arteries and are critical in the modulation of systemic hypertension. Hyperactivity of these nerves can cause renal hypertension, a disease prevalent in 30-40% of the adult population. Hypertension can be treated with neuromodulating agents (such as angiotensin converting enzyme inhibitors, angiotensin II inhibitors, or aldosterone receptor blockers), but requires adherence to strict regimens and often does not reach target blood pressure threshold to reduce risk of major cardiovascular events. A minimally invasive solution is presented here to reduce the activity of the sympathetic nerves surrounding the renal artery by locally delivering neurotoxic or sympathetic nerve-blocking agents into the adventitia. Extended elution of these agents may also be accomplished in order to tailor the therapy to the patient.