Abstract:
The present invention provides a proportional microvalve having a first, second and third layer, and having high aspect ratio geometries. The first layer defines a cavity with inlet and outlet ports. The second layer, doped to have a low resistivity and bonded between the first and third layers, defines a cavity having a flow area to permit fluid flow between the inlet and outlet ports. The second layer further defines an actuatable displaceable member, and one or more thermal actuators for actuating the displaceable member to a position between and including an open and a closed position to permit or occlude fluid flow. The third layer provides one wall of the cavity and provides electrical contacts for electrically heating the thermally expandable actuators. The thermal actuators and the displaceable member have high aspect ratios and are formed by deep reactive ion etching such that they are displaceable in the plane of the second layer while being very stiff out of the plane. Thus, both actuation and displacement of the displaceable member are in the plane of the layer.
Abstract:
A device includes first and second supports, a rotatable body and first and second flexible members. The first flexible member extends between the first support and a first position on the rotatable body. The second flexible member extends between the second support and a second position on the rotatable body. At least one of the supports is capable of linear movement in a first direction with respect to the other. The first position is offset from the second position in a second direction orthogonal to the first direction.
Abstract:
A semiconductor structure with electrically isolated sidewall electrodes on one or more sides of the structure and a method for fabricating the structure are disclosed. The electrically isolated sidewall electrodes are composed of silicon-based conductive material, e.g., doped polysilicon, which allows the electrodes to be formed on one or more sides of the semiconductor structure by using stop-on-oxide deep reactive-ion etching (DRIE). The electrically isolated sidewall electrodes allow the semiconductor structure to generate electrostatic forces between a side surface of the semiconductor structure and a side surface of a similar semiconductor structure. Thus, the semiconductor structure may be used as a part of an electrostatic actuator in a microelectromechanical system (MEMS) device.