摘要:
The present invention provides a system for treating a vascular condition, including a catheter, a stent coupled to the catheter, a drug-polymer coating on the stent including a grafted styrenic block copolymer, and at least one bioactive drug dispersed within the drug-polymer coating.
摘要:
The present invention provides a system for treating a vascular condition, including a catheter, a stent coupled to the catheter, a drug-polymer coating on the stent including a polymeric blend of a phenoxy polymer and a styrenic block copolymer, and a bioactive drug dispersed within the drug-polymer coating.
摘要:
The invention provides a method of delivering a therapeutic agent to the adventitia of a vessel using a catheter-based microsyringe. A therapeutic agent is formed into microparticles, which are dispersed throughout an appropriate liquid carrier to form a therapeutic mixture. A catheter is provided that includes a microsyringe operably attached to an actuator. The microsyringe includes a hollow needle in fluid communication with a therapeutic agent delivery conduit. The catheter is introduced into a target area of a vessel. The actuator is operated to thrust the needle into a wall of the vessel. The therapeutic mixture is supplied to the therapeutic agent delivery conduit and delivered through the conduit to the needle and thereby into the adventitia of the vessel. The actuator is again operated to withdraw the needle from the wall of the vessel and to enclose it within the actuator. The catheter is then removed from the vessel.
摘要:
The present invention provides a system for treating a vascular condition, which includes a catheter; a stent coupled to the catheter, the stent including a stent framework; a phenoxy primer coating operably disposed on the stent framework; and a drug-polymer coating disposed on the phenoxy primer coating. The present invention also provides a drug-coated stent and a method of manufacturing a drug-coated stent.
摘要:
Disclosed herein are implantable medical devices having controlled release biodegradable polymer coatings thereon wherein the polymer is formed from ring opening of γ-butyrolactone and at least one additional monomer selected from the group consisting of trimethylene carbonate, lactide, polyethylene glycol, glycolide, the monomers formed from ring opening of ε-caprolactone, 4-tert-butyl caprolactone, and N-acetyl caprolactone, and combinations thereof, and at least one drug releasable from the biodegradable polymer. Also disclosed are implantable medical devices form of the biodegradable polymers and processes for forming the polymers.
摘要:
Disclosed are implantable medical devices comprising nitric oxide (NO) donating polymers comprising polymer backbones having at least one cyclic amine disposed thereon. Methods are further disclosed for providing nitric oxide-donating polymers.
摘要:
Biocompatible coatings for medical devices are disclosed. Specifically, polymer coatings designed to control the release of bioactive agents from medical devices in vivo are disclosed wherein the solubility parameters of polymers and drugs are closely matched to control elute rate profiles. The present application also discloses providing vascular stents with controlled release coatings and related methods for making these coatings.
摘要:
The present disclosure in a broad aspect provides for diazeniumdiolated phosphorylcholine polymers and associated methods for achieving nitric oxide release. The present polymers have superior biocompatibility and are useful for coating or fabricating medical devices such as a vascular stent.
摘要:
Disclosed herein are implantable medical devices comprising controlled release terpolymers and at least one drug releasable from said terpolymers coating. The terpolymers of the present invention are comprised of acrylate and/or vinyl monomers.
摘要:
Disclosed herein are implantable medical devices coated with or comprising bioabsorbable carbon-based nitric oxide-donating polymers that upon exposure to physiological environments donate nitric oxide (NO).