摘要:
The present inventors found that a physiological effect of a particular DNA can be detected independently within mice into which a pool of various DNAs in various quantities has been introduced. This finding suggests that it is possible to identify a DNA having a particular physiological effect by successively fractionating a pool of various DNAs in various quantities using the particular physiological effect seen within a mammal as an index. Such a method of screening will have the advantage of saving much time and effort as required in conventional screenings such as those utilizing transgenic and knockout mice. Furthermore, the method of screening has the additional advantage of enabling the identification of a DNA having a physiological activity, for example, even when the cells producing a physiologically active substance cannot be maintained in vitro or in immunodeficient animals, or when the cells change their characteristics during passage and stop producing the physiologically active substance.
摘要:
The present inventors found that a physiological effect of a particular DNA can be detected independently within mice into which a pool of various DNAs in various quantities has been introduced. This finding suggests that it is possible to identify a DNA having a particular physiological effect by successively fractionating a pool of various DNAs in various quantities using the particular physiological effect seen within a mammal as an index. Such a method of screening will have the advantage of saving much time and effort as required in conventional screenings such as those utilizing transgenic and knockout mice. Furthermore, the method of screening has the additional advantage of enabling the identification of a DNA having a physiological activity, for example, even when the cells producing a physiologically active substance cannot be maintained in vitro or in immunodeficient animals, or when the cells change their characteristics during passage and stop producing the physiologically active substance.
摘要:
A non-human animal that produces human tissue factor (TF) without substantially producing non-human animal tissue factor, said animal having a genome in which cDNA encoding human TF has been inserted upstream of the translation initiation codon for the non-human animal genomic TF gene.
摘要:
A non-human animal that produces human tissue factor (TF) without substantially producing non-human animal tissue factor, said animal having a genome in which cDNA encoding human TF has been inserted upstream of the translation initiation codon for the non-human animal genomic TF gene.
摘要:
A non-human animal that produces human tissue factor (TF) without substantially producing non-human animal tissue factor, said animal having a genome in which cDNA encoding human TF has been inserted upstream of the translation initiation codon for the non-human animal genomic TF gene.
摘要:
A targeting vector was constructed by replacing exon regions in the SGRF gene with appropriate drug marker genes. This vector was transfected into mouse ES cell lines to obtain chimeric mice, which were then crossed with C57BL/6J mice to obtain mice comprising cells in which one SGRF gene alleles was inactivated. By crossing these mice with each other, the present inventors succeeded in producing mice in which both SGRF gene alleles were inactivated. These genetically modified animals can be used to predict the side effects of drugs such as SGRF antagonists.
摘要:
A targeting vector was constructed by replacing exon regions in the SGRF gene with appropriate drug marker genes. This vector was transfected into mouse ES cell lines to obtain chimeric mice, which were then crossed with C57BL/6J mice to obtain mice comprising cells in which one SGRF gene alleles was inactivated. By crossing these mice with each other, the present inventors succeeded in producing mice in which both SGRF gene alleles were inactivated. These genetically modified animals can be used to predict the side effects of drugs such as SGRF antagonists.
摘要:
The present invention relates to a method of producing a recombinant protein, particularly an antibody, using a cell in which the function of a fucose transporter is inhibited, and it also provides a cell in which the expression of fucose transporter genes on both homologous chromosomes is artificially suppressed.
摘要:
Promoter activities were examined by comparing combinations of promoters and enhancers derived from various genes. A hybrid promoter comprising a combination of a CMV enhancer and a mammalian β-actin promoter, or the post-transcriptional regulatory region of the genomic sequence Woodchuck Hepatitis Virus (WPRE) and a mammalian β-actin promoter was found to be stronger than existing promoters. Furthermore, the activities of the β-actin promoters could be enhanced by coexpressing the oncogene product Ras, which is a transactivator.
摘要:
The present invention provides a gene encoding a fucose transporter, a fucose transporter polypeptide, a method for screening for a compound that binds to a fucose transporter or a compound that inhibits fucose transport activity, a cell having inhibited fucose transporter functions, and a cell wherein the expression of the fucose transporter is inhibited. The present invention further relates to a method for producing recombinant protein, and specifically, to a method for producing protein by which fucose existing within the Golgi apparatus of a host cell is decreased, a method for inhibiting the addition of fucose to protein by which fucose existing within the Golgi apparatus of a host cell is decreased upon production of recombinant protein using the host cell, a method for increasing the cytotoxic activity of an antibody by which an antibody is produced using a cell wherein fucose existing within the Golgi apparatus is decreased, and a cell having a Golgi apparatus wherein fucose existing within the Golgi apparatus is decreased.