摘要:
The present invention provides a ceramic material allowing a pellet having higher density and satisfactory Li ion conduction to be obtained. The ceramic material contains Li, La, Zr, Al and O and has a garnet-type or garnet-like crystal structure, the ratio of the number of moles of Li with respect to La being 2.0 or greater to 2.5 or lower.
摘要:
A solid electrolyte structure containing a porous solid electrolyte is prepared. At least the porous solid electrolyte of the solid electrolyte structure is immersed in a first sol solution containing at least a precursor of an electrode active material as a solute. Then, the first sol solution, in which the porous solid electrolyte is immersed, is heated. A solvent of the first sol solution is evaporated by the heating, whereby a pore of the porous solid electrolyte is filled with a high concentration (a large amount) of the electrode active material precursor.
摘要:
The present invention provides a ceramic material capable of demonstrating compactness and Li ion conductivity to an extent that enables the use of the ceramic material as a solid-state electrolyte material for a lithium secondary battery, or the like. A ceramic material containing Li, La, Zr, Nb and/or Ta, as well as O and having a garnet-type or garnet-like crystal structure is used.
摘要:
A ceramic material that can exhibit sufficient compactness and lithium (Li) conductivity to enable the use thereof as a solid electrolyte material for a lithium secondary battery and the like is provided. The ceramic material contains aluminum (Al) and has a garnet-type crystal structure or a garnet-like crystal structure containing lithium (Li), lanthanum (La), zirconium (Zr) and oxygen (O).
摘要:
The present invention provides a ceramic material capable of demonstrating compactness and Li ion conductivity to an extent that enables the use of the ceramic material as a solid-state electrolyte material for a lithium secondary battery, or the like. A ceramic material containing Li, La, Zr, Nb and/or Ta, as well as O and having a garnet-type or garnet-like crystal structure is used.
摘要:
A first fine particle-containing solution is deposited on an appropriate substrate, and dried to form a first fine particle aggregate layer. Polymer particles are deposited on the first fine particle aggregate layer, and are supplied with a second fine particle-containing solution such that the polymer particles are immersed in the second fine particle-containing solution. The second fine particle-containing solution is dried to form a second fine particle aggregate layer containing a large number of the polymer particles embedded. A first structure precursor is completed at this stage. Then, the first structure precursor is separated from the substrate, and thermally treated. Thus, the production of a first solid electrolyte structure, which has a porous solid electrolyte portion and a dense solid electrolyte portion integrated, is completed.
摘要:
A first fine particle-containing solution is deposited on an appropriate substrate, and dried to form a first fine particle aggregate layer. Polymer particles are deposited on the first fine particle aggregate layer, and are supplied with a second fine particle-containing solution such that the polymer particles are immersed in the second fine particle-containing solution. The second fine particle-containing solution is dried to form a second fine particle aggregate layer containing a large number of the polymer particles embedded. A first structure precursor is completed at this stage. Then, the first structure precursor is separated from the substrate, and thermally treated. Thus, the production of a first solid electrolyte structure, which has a porous solid electrolyte portion and a dense solid electrolyte portion integrated, is completed.
摘要:
An all-solid-state cell has a fired solid electrolyte body, a first electrode layer integrally formed on one surface of the fired solid electrolyte body by mixing and firing an electrode active material and a solid electrolyte, and a second electrode layer integrally formed on the other surface of the fired solid electrolyte body by mixing and firing an electrode active material and a solid electrolyte. The first and the second electrode layers are formed by mixing and firing the electrode active material and the amorphous solid electrolyte, which satisfy the relation Ty>Tz (wherein Ty is a temperature at which the capacity of the electrode active material is lowered by reaction between the electrode active material and the solid electrolyte material, and Tz is a temperature at which the solid electrolyte material is shrunk by firing).
摘要:
An illuminated makeup mirror set includes: a mirror unit; a surface light source with adjustable color that is used to illuminate a makeup subject; a setting unit for setting illumination conditions with the surface light source according to an input operation; an adjustment unit for adjusting color and brightness of the surface light source according to the illumination conditions set by the setting unit; a speaker; and a playback unit that stores a plurality of musical pieces as data, plays a musical piece selected from the plurality of musical pieces according to the illumination conditions and time of illumination with the surface light source, and causes the speaker to output the selected musical piece as a reproduced sound.
摘要:
An illuminated makeup mirror set includes: a mirror unit; a surface light source for illumination with adjustable color and adjustable brightness; a memory unit in which illumination conditions corresponding to a plurality of scenes are stored; a detection unit for detecting the color and brightness of ambient light at an installation position of the makeup mirror set; a selection unit for selecting one of the plurality of scenes according to an input operation; an acquisition unit for acquiring, from the memory unit, illumination conditions corresponding to the scene selected through the selection unit; and an adjustment unit for adjusting the color and brightness of the surface light source according to the color and brightness of the ambient light detected by the detection unit and the illumination conditions acquired by the acquisition unit.