摘要:
A memory control part 12 cyclically assigns time slots to buffer memory parts 21 to 25 respectively and in each time slot, controls access between the corresponding buffer memory part and a synchronous RAM 11. A time slot is determined while assuming the worst case where access to the synchronous RAM is the severest. Time slot groups of [(the number of pixels on one horizontal scanning line)/256] in number are generated in an imaginary one horizontal scanning period, where [ ] denotes an integer portion of the number in the parentheses. For a buffer memory 22 whose data volume changes depending on a compression factor, a time slot ending point may be made variable, or a time slot may be generated by interrupt as an exception.
摘要:
A write operation is performed by using a sequentially-incremented write address upon a first-in first-out memory device, and a read operation is performed by using a sequentially-incremented read address upon the first-in first-out memory device. The write address is cleared by a write reset signal, and the read address is cleared by a read reset signal. A delay circuit is provided to coincide an effective timing of the write reset signal in the memory cell array with that of the read reset signal in the memory cell array.
摘要:
A composite video signal generation method and device comprises circuits for processing a digital signal, by which the circuits can be integrated. The method comprises the steps of calculating a digital luminance signal and two digital chrominance signals combined from digital primary color component signals, balance-modulating a subcarrier by the two digital chrominance signals, and combining the balance-modulated signals and the luminance signal. In the balance-modulation step, a series of phase information values by adding one by one a value of a sampling period of the digital primary color component signal per a subcarrier period is obtained, cosine function values and sine function values are operated in response to the phase information values, and the cosine function values and the sine function values are multiplied by the two digital chrominance signals, respectively. Accordingly, phase information values of the device can be varied, and if the sampling period of the system changes, the digital primary color component signals can be converted to the NTSC signal.
摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of sub fields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 through SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.
摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of sub fields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 through SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.
摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of sub fields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 through SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.
摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of subfields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 throuh SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.
摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of sub fields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 through SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.
摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of sub fields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 through SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.
摘要:
A display driving method drives a display to make a gradation display on a screen of the display depending on a length of a light emission time in each of sub fields forming 1 field, where 1 field is a time in which an image is displayed, N sub fields SF1 through SFN form 1 field, and each sub field includes an address display-time in which a wall charge is formed with respect to all pixels which are to emit light within the sub field and a sustain time which is equal to the light emission time and determines a luminance level. The display driving method includes the steps of setting the sustain times of each of the sub fields approximately constant within 1 field, and displaying image data on the display using N+1 gradation levels from a luminance level 0 to a luminance level N.