摘要:
A method for the detection of a specific material in an object (1), especially in a piece of luggage, using electromagnetic beams, whereby the intensities of non-absorbed beams from at least three beam planes (5.1–5.2) in corresponding detector arrays (4.1–4.5) are measured and evaluated, using the following steps according to the invention:1. generating an at least two-dimensional picture of the object (1) from the measured intensity values;2. selecting one of the spatial regions displayed in the picture as a basis of the value of a material value, which is determined from intensity measurements, for examination;3. determining at least one spatial-geometric value in the region to the examined from positional data of a two-dimensional picture and from intensity values using a stored value of a specific, absorption-influenced value of a suspected material.4. determining, in addition, the corresponding spatial-geometric value solely from three-dimensional geometric values, which are determined from measured intensity values; and5. comparing, directly or indirectly, values of the spatial-geometric values determined in steps 3 and 4, or values derived therefrom, in order to determine if the suspected material is actually present.
摘要:
A transport bin for an X-ray inspection system, comprising a identifying device rigidly connected to the bin, the identifying device having a bin-specific identifier, wherein the identifying device has a memory, in which an identification code that is unique worldwide, in particular a universally unique identifier (UUID), is stored in such a way that theidentification code can be read out.
摘要:
A transport bin for an X-ray inspection system, comprising a identifying device rigidly connected to the bin, the identifying device having a bin-specific identifier, wherein the identifying device has a memory, in which an identification code that is unique worldwide, in particular a universally unique identifier (UUID), is stored in such a way that the identification code can be read out.
摘要:
An imaging system comprises a transmitter (24, 25), a receiver (24, 25, 21), and a controller (20) for directing the transmitter and the receiver to scan an object in a volume. The controller determines which sub-volumes of the volume the object is located within and then performs a fine scan in those sub-volumes. This reduces overall scanning time. The controller (20) may compare a received signal sample magnitude from the initial scan with a threshold to make the decision. The initial scan may be performed with a spot size to include only one or more particular volume elements within at least some of the sub-volumes.
摘要:
Disclosed is a uniquely identifiable identification system incorporated into an X-ray testing apparatus or into this system, so that each operator can log onto the operating system only with his or her own individual identification. The identification is read and optionally rewritten by a counterpart device of the identification system. Upon leaving the operating system, the operator is automatically logged off by way of removing the identification device, or by way of exiting from a defined local area around the X-ray testing apparatus, and the operating system is then ready for access by another operator.
摘要:
In a device and processes for inspecting an object (1), particularly a piece of luggage, in which radiation is emitted by a stationary radiation source (2) while the object (1) is transported in a straight line through the radiation with intensity levels of unabsorbed radiation being detected by a detector arrangement (3) and processed into an image of the object (1), the object (1) is rotated by a rotating device (8) through an angle after a pass through the radiation in order to change its transport position, and is subsequently transported through the radiation again with another image being produced. This facilitates improved inspection by reducing so-called “dark alarms.”
摘要:
An imaging system comprises a transmitter (24, 25), a receiver (24, 25, 21), and a controller (20) for directing the transmitter and the receiver to scan an object in a volume. The controller determines which sub-volumes of the volume the object is located within and then performs a fine scan in those sub-volumes. This reduces overall scanning time. The controller (20) may compare a received signal sample magnitude from the initial scan with a threshold to make the decision. The initial scan may be performed with a spot size to include only one or more particular volume elements within at least some of the sub-volumes.
摘要:
Disclosed is a uniquely identifiable identification system incorporated into an X-ray testing apparatus or into this system, so that each operator (6) can log onto the operating system only with his or her own individual identification (4, 4.1). The identification (4, 4.1) is read and optionally rewritten by a counterpart device (3, 3.1) of the identification system. Upon leaving the operating system, the operator (6) is automatically logged off by way of removing the identification device (4, 4.1), or by way of exiting from a defined local area (N) around the X-ray testing apparatus, and the operating system is then ready for access by another operator (6).
摘要:
The invention relates to an inspection device for inspecting objects, particularly for explosives. The invention makes provision, particularly where space for the inspection system is tight, to use at least the available area as a scanning area, around which is arranged at least one movable radiation source at which is aimed a detector arrangement that can be moved mechanically independently of the radiation source. In this context, the radiation source and also the detector arrangement can be moved parallel to and simultaneously with one another by mechanical or electrical coupled actuators. The synchronous movement is controlled and monitored with the aid of a computer. Because of the tight space, provision is further made for the object to be scanned in the direction of and opposite to the direction of transport of the object, wherein the object is scanned once with low-energy radiation, and subsequently is scanned with high-energy radiation. The image segments thus generated are recorded separately, stored, and analyzed together.