摘要:
Provided is an anodic oxide processing method in which the generation of cracks is suppressed in an anodic oxide film formed on an aluminum alloy substrate surface, such as an inner wall of a vacuum chamber of a plasma processing device, and an anodic oxide film having low heat reflectivity and a high withstand voltage is formed with high efficiency. The method for forming an anodic oxide film involves forming the anodic oxide film on the surface of a JIS 6061 aluminum alloy substrate in a sulfuric acid solution or a mixed acid solution of sulfuric acid and oxalic acid.
摘要:
An Al alloy member having excellent corrosion resistance comprises an Al or Al alloy substrate having an anodic oxide film including a porous layer and a pore-free barrier layer. At least a part of a structure of the barrier layer is altered into boehmite and/or pseudo-boehmite, a dissolution rate of the film is at 100 mg/dm2/15 minutes or below when determined by an immersion test in phosphoric acid/chromic acid (JIS H 8683-2), and a corroded area percent is at 10% or below after allowing the film to stand in an atmosphere of 5% Cl2—Ar gas at 400° C. for 4 hours.
摘要翻译:具有优异耐腐蚀性的Al合金构件包括具有包括多孔层和无孔阻隔层的阳极氧化膜的Al或Al合金基底。 阻挡层的结构的至少一部分被改变为勃姆石和/或假勃姆石,当通过磷酸浸渍试验测定时,膜的溶解速率为100mg / dm 2/15分钟或更低 酸/铬酸(JIS H 8683-2),腐蚀面积百分数在使膜在5%Cl 2 -Ar气氛中在400℃下放置4小时后为10%以下。
摘要:
A chamber material made of Al alloy excellent in thermal cracking resistance and chemical and/or physical corrosion resistance and capable of reducing contamination excellently and further having excellent and wide applicable brazing property in a high temperature corrosive circumstance, in which the substrate aluminum material for the chamber material made of Al alloy having an anodized film comprises 0.1 to 2.0% Si, 0.1 to 3.5% Mg, 0.02 to 4.0% Cu on the mass% basis and the balance of Al and impurity element with Cr in the impurity elements being less than 0.04%. Preferably, Fe is 0.1% or less and Mn is 0.04% or less in the impurity element and, further, the total sum of impurity elements other than Cr and Mn being restricted to 0.1% or less. This invention can be utilized suitably to various materials used in high temperature corrosive circumstance, particularly, in high temperature corrosive gas or plasma atmosphere.
摘要:
The present invention provides a method for forming an anode oxide film, in which on the assumption that a direct-current power source is used, a thick anode oxide film can be formed with good productivity within a short time without using special equipment. The method includes allowing a current A0 to pass through an aluminum base material, and includes a step of repeating a first electricity cut-off treatment multiple times, in which when a voltage reaches a voltage V1 during the formation of the film, the passage of electricity is once cut off, this electricity cut-off is continued for a period equal to or longer than an electricity cut-off time T1, and the passage of electricity is then resumed, wherein the voltage V1 and electricity cut-off time T1 satisfy the prescribed expressions.
摘要:
A method of manufacturing a surface treated member used for semiconductor liquid crystal manufacturing apparatus, capable of forming an anodized film at a higher hardness than that of an anodizing film formed of an existent method, with no problem in view of the generation of cracks, and excellent in the balance between a high hardness and reduced cracks by a simple and convenient method by forming an anodized film to the surface of a member having an aluminum alloy or pure aluminum as a basic material, then dipping the same in pure water, and applying a hydrating treatment to the anodized film, wherein the hydrating treatment is conducted under the conditions satisfying that a treatment temperature is 80° C. to 100° C. and a treatment time (min)≧−1.5×treatment temperature (° C.)+270.
摘要:
Provided is an anodic oxide processing method in which the generation of cracks is suppressed in an anodic oxide film formed on an aluminum alloy substrate surface, such as an inner wall of a vacuum chamber of a plasma processing device, and an anodic oxide film having low heat reflectivity and a high withstand voltage is formed with high efficiency. The method for forming an anodic oxide film involves forming the anodic oxide film on the surface of a JIS 6061 aluminum alloy substrate in a sulfuric acid solution or a mixed acid solution of sulfuric acid and oxalic acid. The total voltage in the direction of the film thickness is at least 1650 V·μm for the entire film thickness of the anodic oxide film formed. In the method for forming an anodic oxide film in which the anodic oxide film from the boundary surface of the aluminum alloy substrate with the anodic oxide film to the surface of the anodic oxide film and the 25 μm position in the film thickness direction is formed at no more than the electrolysis voltage of 27 V, and the total voltage from the boundary surface to the 25 μm position in the film thickness direction is at least 820 V·μm and no more than 1000 V·μm, an anodic oxide film having a high withstand voltage can be formed to satisfy the heat reflectivity, crack density, processing time, and the desired standards.
摘要:
The aluminum alloy for anodic oxidation treatment directed to the present invention comprises as alloy elements 0.1 to 2.0% Mg, 0.1 to 2.0% Si, and 0.1 to 2.0% Mn, wherein each content of Fe, Cr, and Cu is limited to 0.03 mass % or less, and wherein the remainder is composed of Al and inevitable impurities. An aluminum alloy more excellent in the durability can be obtained by subjecting the aluminum alloy ingot having the above element composition to a homogenization treatment at a temperature of more than 550° C. to 600° C. or less. An aluminum alloy member can be obtained by forming an anodic oxidation coating on the surface of the aluminum alloy.
摘要:
To provide an aluminum alloy or aluminum member having an anodic oxide coating formed thereon, the coating having excellent resistance to gaseous corrosion and resistance to plasma and excellent adhesion, and a member for a vacuum apparatus formed of such an aluminum alloy or aluminum member having excellent corrosion resistance. Moreover, a member having a sufficient voltage resistance is provided to stably keep a plasma state in a process using plasma.The object is substantialized by providing the following: (1) An aluminum alloy or aluminum member, wherein the anodic oxide coating has impedance of at least 107Ω at a frequency of 10−2 Hz, and hardness of at least 400 in Vickers hardness (Hv); or (2) An aluminum alloy or aluminum member, wherein the anodic oxide coating has impedance of at least 108Ω at a frequency of 10−2 Hz, and hardness of at least 350 in Vickers hardness (Hv).
摘要:
The present invention relates to a vacuum chamber and chamber parts made of aluminum or its alloys which exhibit excellent corrosion resistance to a corrosive gas or plasma introduced into the vacuum chamber, the surface treatment, and material for the vacuum chamber. The vacuum chamber has a porous layer with a structure in which a pore diameter at the top thereof is small, while a pore diameter at the bottom thereof is large. In order to give such a structure to the porous layer, a final anodizing voltage is set to be higher than an initial anodizing voltage when the surface of the base material is anodized. After the porous-type anodizing is completed, non-porous type anodizing may be conducted so as to grow a barrier layer. Furthermore, the base material made of aluminum alloy preferably has particles such as precipitates and/or deposits with a diameter of 10 .mu.m or less in average, and the precipitates and/or deposits are arranged in parallel with a largest surface of the base material.
摘要:
An aluminum or aluminum alloy member superior in liquid and gaseous corrosion resistance and plasma resistance, which has an anodized film formed thereon which is composed of a porous layer and a non-porous barrier layer whose structure is at least partly boehmite or pseudo-boehmite. Said anodized film is characterized by that the film dissolving rate measured by the test for immersion in a mixture of phosphoric acid and chromic acid (conforming to JIS H8683-2) is less than 120 mg/dm2/15 min, the ratio of area in which corrosion occurs after standing for 2 hours in an atmosphere of argon containing 5% chlorine (at 300° C.) is less than 15%, and the hardness (Hv) of the film is no lower than 420.