Abstract:
The proposed invention is about an improved method for serial-in and serial-out transceiver applications. The proposed system includes a dual loop phase locked loop (PLL) architecture having a PLL and a phase rotator (PR)-based delay locked loop (DLL). An advantage of this architecture is that a single PLL offers decoupled bandwidths; a wide jitter-tolerance (JTOL) bandwidth for receiving data and a narrow jitter transfer (JTRAN) bandwidth for the data transmission. Thus, the amount of jitter at the output can be substantially reduced relative to the input while offering sufficient jitter tracking bandwidth. Also, this architecture is suitable for low-power applications since a phase shifter in the data path, which is one of the most power-hungry blocks in conventional DPLL designs, is not required.
Abstract:
The present invention relates to a microstrip circuit and a chip-to-chip interface apparatus comprising the same. According to one aspect of the invention, there is provided a microstrip circuit. The microstrip circuit includes a feeding line providing a signal, a probe being connected to one end of the feeding line, and a patch emitting the signal to a waveguide. The patch is disposed in a layer opposite to a layer in which the feeding line and the probe are disposed, with a core substrate being positioned therebetween. At least one of length of the probe, thickness of the core substrate, and permittivity of the core substrate is determined based on bandwidth of a transition between the microstrip circuit and the waveguide.
Abstract:
Exemplary embodiments of the present invention relate to a clock and data recovery (CDR) apparatus with adaptive optimum CDR bandwidth estimation by using a Kalman gain extractor. The Kalman gain extractor includes an off chip digital processor which receives a phase update information from the CDR outputs an estimated optimum Kalman gain obtained by extracting the standard deviation of step sizes of the accumulation jitter from the power spectral density (PSD) of the phase update information, and a on chip digital loop filter consists of a cyclic accumulator which accumulates the phase detector's output, a gain multiplier and a phase interpolator (or DCO) controller. The off chip digital processor includes a storage register, a fast Fourier transform (FFT) processor and an optimum Kalman gain estimator. The storage register stores the phase update information, from which the FFT processor extracts the PSD of the absolute input jitter. The optimum Kalman gain estimator calculates the optimum gain from the PSD of the accumulation jitter. The off chip digital processor may further include a gain calibrator to compensate for the variations in the transition density.
Abstract:
The proposed invention is about an improved method for serial-in and serial-out transceiver applications. The proposed system includes a dual loop phase locked loop (PLL) architecture having a PLL and a phase rotator (PR)-based delay locked loop (DLL). An advantage of this architecture is that a single PLL offers decoupled bandwidths; a wide jitter-tolerance (JTOL) bandwidth for receiving data and a narrow jitter transfer (JTRAN) bandwidth for the data transmission. Thus, the amount of jitter at the output can be substantially reduced relative to the input while offering sufficient jitter tracking bandwidth. Also, this architecture is suitable for low-power applications since a phase shifter in the data path, which is one of the most power-hungry blocks in conventional DPLL designs, is not required.
Abstract:
Exemplary embodiments of the present invention relate to an internal jitter tolerance tester. The internal jitter tolerance tester may include a digital loop filter consisting of a cyclic accumulator which accumulates a phase detector's output, a gain multiplier, an internal accumulated jitter generator (or an internal sinusoid jitter generator), and a phase rotator (or DCO) controller.The internal accumulated jitter generator may include a PRBS generator, a digital loop filter, an accumulator, and a gain controller. The accumulated jitter generator also may be replaced with the internal sinusoid jitter generator. The internal sinusoid jitter generator may include a counter, a sinusoid jitter profile lookup table, and a gain controller.
Abstract:
Exemplary embodiments of the present invention relate to a low-power highly-accurate passive multiphase clock generation scheme by using polyphase filters. An exemplary embodiment of the present invention may be low power phase-rotator-based 25 GB/s CDR architecture in case that half-rate reference clock is provided. It may be suitable for multi-lane scheme and incorporate phase interpolator with improved phase accuracy to make Nyquist-sampling clock phase. To improve the phase accuracy, poly phase filter may be used for converting 4-phase to 8-phase and interpolate adjacent 45 degree different phases. The linearity of phase rotator may be improved by proposed harmonic rejection poly phase filter (HRPPF) using the characteristic of notch filter response.
Abstract translation:本发明的示例性实施例涉及通过使用多相滤波器的低功率高精度无源多相时钟生成方案。 在提供半速率参考时钟的情况下,本发明的示例性实施例可以是基于低功率相位旋转器的25GB / s CDR架构。 它可能适用于多通道方案,并且并入具有提高的相位精度的相位内插器,以使奈奎斯特采样时钟相位。 为了提高相位精度,多相滤波器可用于将4相转换为8相,并内插相邻的45度相位。 通过使用陷波滤波器响应的特性,提出的谐波抑制多相滤波器(HRPPF)可以改善相位旋转器的线性度。
Abstract:
The present invention relates to a waveguide for transmission of electromagnetic wave signals. According to one aspect of the invention, there is provided a waveguide for transmission of electromagnetic wave signals, comprising: a dielectric part comprising two or more dielectrics having different permittivity; and a conductor part surrounding at least a part of the dielectric part.
Abstract:
The present invention relates to a waveguide for transmission of electromagnetic wave signals and a chip-to-chip interface apparatus comprising the same. According to one aspect of the invention, there is provided a waveguide for transmission of electromagnetic wave signals, comprising: a dielectric part; and a conductor part surrounding at least a part of the dielectric part, wherein a signal of a first frequency band is transmitted through the dielectric part, and a signal of a second frequency band lower than the first frequency band is transmitted through the conductor part.
Abstract:
The present invention relates to a microstrip-waveguide transition for transmission of electromagnetic wave signals. According to one aspect of the invention, there is provided a microstrip-waveguide transition for transmission of electromagnetic wave signals, comprising: a feeding part for providing an electromagnetic wave signal to be transmitted through the waveguide; and a ground part formed at a predetermined interval from the feeding part, wherein the microstrip and the waveguide are coupled alongside each other along a length direction of the waveguide, and wherein a distance between the feeding part and the ground part in a direction perpendicular to the length direction of the waveguide is greater as it is closer to the waveguide.