Abstract:
The present disclosure relates to an onshore lithium-recovering device for a lithium ion adsorption and desorption process including a supply unit for supplying lithium-containing water in which lithium is dissolved, a composite unit, a washing unit, a desorbing liquid unit, an extract liquid unit, a pressure adjusting unit, a discharge unit, and a control unit. Therefore, the lithium adsorption means is moved onshore so it is possible to significantly reduce the plant installation cost and the operating cost as compared to the lithium recovery process that operates the conventional offshore plant.
Abstract:
The present invention relates to a lithium recovery device and recovery method. The lithium recovery device of the present invention includes: a first electrode; a second electrode; and a power supply device. In the lithium recovery device of the present invention, since lithium is attached to an adsorbent of the first electrode by applying a current to the first and second electrodes in a state in which the first and second electrodes are immersed in a lithium-containing fluid, the first electrode including a carrier made of a stainless steel material in a form of an iron mesh or perforated sheet and having a surface coated with the adsorbent containing a manganese oxide, and the second electrode facing the first electrode, it is possible to increase a size of the device and have excellent energy efficiency and economic feasibility.
Abstract:
The invention relates to a lithium adsorption-desorption apparatus including a plurality of reaction tanks arranged in a row; a guide rail disposed at an upper portion of the reaction tank; a movable driving unit coupled to a moving means that moves along the guide rail; and a reaction housing which is mounted to the driving unit, and can be vertically moved or rotated in a state in which the lithium adsorbent is fixed thereto, and after immersing in the reaction tank, accelerates adsorption or desorption of lithium, and after being lifted, discharges residual solution from the lithium adsorbent by rotation movement. Therefore, the lithium adsorption desorption apparatus can fix a large amount of lithium adsorbent and immerse it in a lithium-containing solution to effectively adsorb lithium and then quickly desorb lithium in a desorption solution, and can efficiently wash the lithium adsorbent in a cleaning solution.
Abstract:
Provided is a recovery method of useful resources in seawater and brine, and more particularly, a recovery method of useful resources in seawater and brine capable of improving adsorption efficiency and recovery efficiency of trace amounts of useful resources such as strontium, lithium, boron, or the like, present in brine at low cost by using a magnetic adsorbent composite and a solid-liquid separation process which uses magnetic force.
Abstract:
The present invention relates to an ion-exchange manganese oxide lithium adsorbent using a porous structure and a method for preparing the same. The lithium adsorbent according to the present invention is highly dispersed on the surface of the porous structure, and thus it has excellent adsorption performance and physical stability and is easy to handle. Moreover, through the porous structure, the contact between a lithium-containing solution and the adsorbent is facilitated to maximize the adsorption capacity, thus making it possible to highly efficiently recover lithium ions from a solution containing a small amount of lithium ions.
Abstract:
Provided is an underwater holding-type lithium recovering apparatus 1000 including: an underwater holder 100 installed on an offshore sea bed; a lithium adsorbent 200 held in the underwater holder 100 and adsorbing lithium ions contained in seawater; a moving ship 300 installed with a cleaning tank 320 cleaning the lithium adsorbent 200 transferred from the underwater holder 100 and a desorbing tank 330 desorbing lithium ions adsorbed in the lithium adsorbent 200 transferred from the cleaning tank 320, and moved to a coastline when lithium ions of a reference value or more are filled in the desorbing tank 330; and a transfer pump 400 transferring lithium ions filled in the desorbing tank 330 to a reservoir 500 installed at the coastline.
Abstract:
Provided are a lithium adsorbent prepared using an aerosol deposition method, including (a) synthesizing lithium manganese oxide powder, and (b) coating the lithium manganese oxide powder on a surface of a substrate by the aerosol deposition method, and a method of preparing the same. The lithium adsorbent is characterized in that the lithium manganese oxide powder may be directly coated on various substrates using the aerosol deposition method, thereby greatly reducing a decrease of a lithium recovery rate even after a long time has lapsed.Further, the lithium adsorbent having a large surface area prepared by the preparation method of the present invention is characterized by being easily handled, being selectively reacted with lithium ions, having a larger adsorption area, being physically and chemically stable, and being used reversibly.