摘要:
Systems and methods for minimizing overlay error during alignment of a template with a substrate are described. Templates generally include two distinct types of alignment marks: buried alignment marks and complementary alignment marks. Buried marks may be fabricated separately from the patterning surface, and the complementary marks may be fabricated in the same step as the patterning surface.
摘要:
Imprint lithography substrates may include alignment marks formed of high contrast material. Exemplary methods for forming alignment marks having high contrast material are described.
摘要:
Imprint lithography substrates may include alignment marks formed of high contrast material. Exemplary methods for forming alignment marks having high contrast material are described.
摘要:
Particles may be present on substrates and/or templates during nano-lithographic imprinting. Particles may be mitigated and/or removed using localized removal techniques and/or imprinting techniques as described.
摘要:
Systems and methods for improving robust layer separation during the separation process of an imprint lithography process are described. Included are methods of matching strains between a substrate to be imprinted and the template, varying or modifying the forces applied to the template and/or the substrate during separation, or varying or modifying the kinetics of the separation process.
摘要:
Systems and methods for improving robust layer separation during the separation process of an imprint lithography process are described. Included are methods of matching strains between a substrate to be imprinted and the template, varying or modifying the forces applied to the template and/or the substrate during separation, or varying or modifying the kinetics of the separation process.
摘要:
Systems and methods for improving robust layer separation during the separation process of an imprint lithography process are described. Included are methods of matching strains between a substrate to be imprinted and the template, varying or modifying the forces applied to the template and/or the substrate during separation, or varying or modifying the kinetics of the separation process.
摘要:
The present invention is directed towards a method for determining deformation parameters that a patterned device would undergo to minimize dimensional variations between a recorded pattern thereon and a reference pattern, the method including, inter alia, comparing spatial variation between features of the recorded pattern with respect to corresponding features of the reference pattern; and determining deformation forces to apply to the patterned device to attenuate the dimensional variations, with the forces having predetermined constraints, wherein a summation of a magnitude of the forces is substantially zero and a summation of moment of the forces is substantially zero.
摘要:
The present invention is directed towards a method for determining deformation parameters that a patterned device would undergo to minimize dimensional variations between a recorded pattern thereon and a reference pattern, the method including, inter alia, comparing spatial variation between features of the recorded pattern with respect to corresponding features of the reference pattern; and determining deformation forces to apply to the patterned device to attenuate the dimensional variations, with the forces having predetermined constraints, wherein a summation of a magnitude of the forces is substantially zero and a summation of moment of the forces is substantially zero.
摘要:
One embodiment of the present invention is a method for generating patterned features on a substrate that includes: (a) forming a first layer on at least a portion of a surface of the substrate, the first layer comprising at least one layer of a first material, which one layer abuts the surface of the substrate; (b) forming a second layer of a second material on at least a portion of the first layer, which second layer is imprinted with the patterned features; (c) removing at least portions of the second layer to extend the patterned features to the first layer; and (d) removing at least portions of the first layer to extend the patterned features to the substrate; wherein the first layer and the second layer may be exposed to an etching process that undercuts the patterned features, and the first material may be lifted-off.