摘要:
The present invention is directed towards a method for determining deformation parameters that a patterned device would undergo to minimize dimensional variations between a recorded pattern thereon and a reference pattern, the method including, inter alia, comparing spatial variation between features of the recorded pattern with respect to corresponding features of the reference pattern; and determining deformation forces to apply to the patterned device to attenuate the dimensional variations, with the forces having predetermined constraints, wherein a summation of a magnitude of the forces is substantially zero and a summation of moment of the forces is substantially zero.
摘要:
The present invention is directed towards a method for determining deformation parameters that a patterned device would undergo to minimize dimensional variations between a recorded pattern thereon and a reference pattern, the method including, inter alia, comparing spatial variation between features of the recorded pattern with respect to corresponding features of the reference pattern; and determining deformation forces to apply to the patterned device to attenuate the dimensional variations, with the forces having predetermined constraints, wherein a summation of a magnitude of the forces is substantially zero and a summation of moment of the forces is substantially zero.
摘要:
Control of lateral strain and lateral strain ratio (dt/db) between template and substrate through the selection of template and/or substrate thicknesses (Tt and/or Tb), control of template and/or substrate back pressure (Pt and/or Pb), and/or selection of material stiffness are described.
摘要:
The present invention is directed towards a method of separating a mold, included in a template, from a layer disposed on a substrate, the method including, inter alia, applying a separation force to the template to separate the template from the layer; and facilitating localized deformation in the substrate to reduce the separation force required to achieve separation.
摘要:
The present invention is directed toward a system to vary dimensions of a substrate, such as a template having a patterned mold. To that end, the system includes a substrate chuck adapted to position the substrate in a region; a pliant member; and an actuator sub-assembly elastically coupled to the substrate chuck through the pliant member. The actuator assembly includes a plurality of lever sub-assemblies, one of which includes a body lying in the region and spaced-apart from an opposing body associated with one of the remaining lever sub-assemblies of the plurality of lever sub-assemblies. One of the plurality of lever assemblies is adapted to vary a distance between the body and the opposing body. In this manner, compressive forces may be applied to the template to remove unwanted magnification or other distortions in the pattern on the mold. The pliant member is configured to attenuate a magnitude of resulting forces sensed by the substrate chuck generated in response to the compressive forces.
摘要:
An imprint lithography template or imprinting stack includes a porous material defining a multiplicity of pores with an average pore size of at least about 0.4 nm. A porosity of the porous material is at least about 10%. The porous template, the porous imprinting stack, or both may be used in an imprint lithography process to facilitate diffusion of gas trapped between the template and the imprinting stack into the template, the imprinting stack or both, such that polymerizable material between the imprinting stack and the template rapidly forms a substantially continuous layer between the imprinting stack and the template.
摘要:
Control of lateral strain and lateral strain ratio (dt/db) between template and substrate through the selection of template and/or substrate thicknesses (Tt and/or Tb), control of template and/or substrate back pressure (Pt and/or Pb), and/or selection of material stiffness are described.
摘要:
An imprint lithography template or imprinting stack includes a porous material defining a multiplicity of pores with an average pore size of at least about 0.4 nm. A porosity of the porous material is at least about 10%. The porous template, the porous imprinting stack, or both may be used in an imprint lithography process to facilitate diffusion of gas trapped between the template and the imprinting stack into the template, the imprinting stack or both, such that polymerizable material between the imprinting stack and the template rapidly forms a substantially continuous layer between the imprinting stack and the template.
摘要:
The present invention is directed to a method of controlling dimensional relations between an original pattern present in a mold and a recorded pattern formed in a layer of a substrate. In this manner, the size of the recorded pattern may appear to be magnified and/or reduced, when compared to the original pattern. To that end, the method comprises defining a region on the layer in which to produce the recorded pattern. The substrate is bent to produce a contoured surface in the region. Dimensional variations in the original pattern are produced by bending the mold, defining a varied pattern. The contoured surface and the mold are provided to have similar radii of curvatures. The varied pattern is then recorded in the layer. These and other embodiments of the present invention are discussed more fully below.
摘要:
Systems and methods for imprinting and aligning an imprint lithography template with a field on a substrate are described. The field of the substrate may include an elongated side, and alignment sensitivity on the elongated side may be intentionally minimized.