摘要:
Among other things, one or more techniques for forming a vertical tunnel field effect transistor (FET), and a resulting vertical tunnel FET are provided herein. In an embodiment, the vertical tunnel FET is formed by forming a core over a first type substrate region, forming a second type channel shell around a circumference greater than a core circumference, forming a gate dielectric around a circumference greater than the core circumference, forming a gate electrode around a circumference greater than the core circumference, and forming a second type region over a portion of the second type channel shell, where the second type has a doping opposite a doping of the first type. In this manner, line tunneling is enabled, thus providing enhanced tunneling efficiency for a vertical tunnel FET.
摘要:
Among other things, one or more techniques for forming a vertical tunnel field effect transistor (FET), and a resulting vertical tunnel FET are provided herein. In an embodiment, the vertical tunnel FET is formed by forming a core over a first type substrate region, forming a second type channel shell around a circumference greater than a core circumference, forming a gate dielectric around a circumference greater than the core circumference, forming a gate electrode around a circumference greater than the core circumference, and forming a second type region over a portion of the second type channel shell, where the second type has a doping opposite a doping of the first type. In this manner, line tunneling is enabled, thus providing enhanced tunneling efficiency for a vertical tunnel FET.
摘要:
A system and method for a channel region is disclosed. An embodiment comprises a channel region with multiple bi-layers comprising alternating complementary materials such as layers of InAs and layers of GaSb. The alternating layers of complementary materials provide desirable band gap characteristics for the channel region as a whole that individual layers of material may not.
摘要:
A system and method for a channel region is disclosed. An embodiment comprises a channel region with multiple bi-layers comprising alternating complementary materials such as layers of InAs and layers of GaSb. The alternating layers of complementary materials provide desirable band gap characteristics for the channel region as a whole that individual layers of material may not.
摘要:
A Fin Field-Effect Transistor (FinFET) includes a fin, which includes a channel splitter having a first bandgap, and a channel including a first portion and a second portion on opposite sidewalls of the channel splitter. The channel has a second bandgap smaller than the first bandgap. A gate electrode includes a first portion and a second portion on opposite sides of the fin. A gate insulator includes a first portion between the first portion of the gate electrode and the first portion of the channel, and a second portion between the second portion of the gate electrode and the second portion of the channel.
摘要:
A tunnel field-effect transistor (TFET) includes a gate electrode, a source region, and a drain region. The source and drain regions are of opposite conductivity types. A channel region is disposed between the source region and the drain region. A source diffusion barrier is disposed between the channel region and the source region. The source diffusion barrier and the source region are under and overlapping the gate electrode. The source diffusion barrier has a first bandgap greater than second bandgaps of the source region, the drain region, and the channel region.
摘要:
A Fin Field-Effect Transistor (FinFET) includes a fin, which includes a channel splitter having a first bandgap, and a channel including a first portion and a second portion on opposite sidewalls of the channel splitter. The channel has a second bandgap smaller than the first bandgap. A gate electrode includes a first portion and a second portion on opposite sides of the fin. A gate insulator includes a first portion between the first portion of the gate electrode and the first portion of the channel, and a second portion between the second portion of the gate electrode and the second portion of the channel.
摘要:
A tunnel field-effect transistor (TFET) includes a gate electrode, a source region, and a drain region. The source and drain regions are of opposite conductivity types. A channel region is disposed between the source region and the drain region. A source diffusion barrier is disposed between the channel region and the source region. The source diffusion barrier and the source region are under and overlapping the gate electrode. The source diffusion barrier has a first bandgap greater than second bandgaps of the source region, the drain region, and the channel region.
摘要:
The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a buffer layer over a substrate, the buffer layer containing a first compound semiconductor that includes elements from one of: III-V families of a periodic table; and II-VI families of the periodic table. The method includes forming a channel layer over the buffer layer. The channel layer contains a second compound semiconductor that includes elements from the III-V families of the periodic table. The method includes forming a gate over the channel layer. The method includes depositing impurities on regions of the channel layer on either side of the gate. The method includes performing an annealing process to activate the impurities in the channel layer.
摘要:
A thin body MOSFET with conducting surface channel extensions and gate-controlled channel sidewalls is described. One embodiment is a MOSFET comprising a semiconductor substrate; a channel layer disposed on a top surface of the substrate; a gate dielectric layer interposed between a gate electrode and the channel layer; and dielectric extension layers disposed on top of the channel layer and interposed between the gate electrode and Ohmic contacts. The gate dielectric layer comprises a first material, the first material forming an interface of low defectivity with the channel layer. In contrast, the dielectric extensions comprise a second material different than the first material, the second material forming a conducting surface channel with the channel layer.