摘要:
A semiconductor fabrication process allows the fabrication of both logic and memory devices using a conventional CMOS process with a few additional steps. The additional steps, however, do not require additional masks. Accordingly, the process can be reduce the complexity, time, and cost for fabricating logic and memory devices on the same substrate, especially for embedded applications.
摘要:
A semiconductor fabrication process allows the fabrication of both logic and memory devices using a conventional CMOS process with a few additional steps. The additional steps, however, do not require additional masks. Accordingly, the process can be reduce the complexity, time, and cost for fabricating logic and memory devices on the same substrate, especially for embedded applications.
摘要:
A one-time programmable memory array includes a first row conductor extending in a first row direction and disposed at a first elevation, a second row conductor extending in a second row direction and disposed at a second elevation and a column conductor extending in a column direction and disposed adjacent to the first row conductor and adjacent to the second row conductor. The array also includes a dielectric layer covering at least a portion of the column conductor, a fuse link coupled between the dielectric layer on the column conductor and the second row conductor.
摘要:
A method for fabricating a floating gate memory device comprises using self-aligned process for formation of a fourth poly layer over a partial gate structure that does not require an additional photolithographic step. Accordingly, enhanced device reliability can be achieved because a higher GCR can be maintained with lower gate bias levels. In addition, process complexity can be reduced, which can increase throughput and reduce device failures.
摘要:
A method for fabricating a floating gate memory device comprises using self-aligned process for formation of a fourth poly layer over a partial gate structure that does not require an additional photolithographic step. Accordingly, enhanced device reliability can be achieved because a higher GCR can be maintained with lower gate bias levels. In addition, process complexity can be reduced, which can increase throughput and reduce device failures.
摘要:
Dual spacer structures are fabricated such that sidewall spacers in a cell region are thinner than sidewall spacers in a periphery region. The fabricating method of memory includes forming a stop layer over the first semiconductor feature and the second semiconductor feature in cell region and periphery region. A spacer layer is formed over the stop layer in the periphery region. The spacer layer is patterned to form a spacer on a sidewall of the second semiconductor feature. An etching process is performed to form a resultant spacer on an interior sidewall of the opening between first semiconductor features. The stop layer on top surfaces of the first and second semiconductor features is removed.
摘要:
A memory array comprises a semiconductor body having a plurality of trenches aligned generally in parallel. The trenches contain semiconductor material, such as doped amorphous silicon, and act as source/drain lines for the memory array. Insulating liners lie between the semiconductor material within the trenches and the semiconductor body. A plurality of word lines overlie the plurality of trenches and channel regions in the semiconductor body in an array of cross points. Charge trapping structures lie between the word lines and the channel regions at the cross points, providing an array of flash memory cells. The charge trapping structures comprise dielectric charge trapping structures adapted to be programmed and erased to store data. A method for manufacturing such devices includes patterning and forming the sources/drain lines with insulating liners prior to formation of the charge trapping structure over the channel regions.
摘要:
A memory array comprises a semiconductor body having a plurality of trenches aligned generally in parallel. The trenches contain semiconductor material, such as doped amorphous silicon, and act as source/drain lines for the memory array. Insulating liners lie between the semiconductor material within the trenches and the semiconductor body. A plurality of word lines overlie the plurality of trenches and channel regions in the semiconductor body in an array of cross points. Charge trapping structures lie between the word lines and the channel regions at the cross points, providing an array of flash memory cells. The charge trapping structures comprise dielectric charge trapping structures adapted to be programmed and erased to store data. A method for manufacturing such devices includes patterning and forming the sources/drain lines with insulating liners prior to formation of the charge trapping structure over the channel regions.
摘要:
A memory array comprises a semiconductor body having a plurality of trenches aligned generally in parallel. The trenches contain semiconductor material, such as doped amorphous silicon, and act as source/drain lines for the memory array. Insulating liners lie between the semiconductor material within the trenches and the semiconductor body. A plurality of word lines overlie the plurality of trenches and channel regions in the semiconductor body in an array of cross points. Charge trapping structures lie between the word lines and the channel regions at the cross points, providing an array of flash memory cells. The charge trapping structures comprise dielectric charge trapping structures adapted to be programmed and erased to store data. A method for manufacturing such devices includes patterning and forming the sources/drain lines with insulating liners prior to formation of the charge trapping structure over the channel regions.
摘要:
A memory array comprises a semiconductor body having a plurality of trenches aligned generally in parallel. The trenches contain semiconductor material, such as doped amorphous silicon, and act as source/drain lines for the memory array. Insulating liners lie between the semiconductor material within the trenches and the semiconductor body. A plurality of word lines overlie the plurality of trenches and channel regions in the semiconductor body in an array of cross points. Charge trapping structures lie between the word lines and the channel regions at the cross points, providing an array of flash memory cells. The charge trapping structures comprise dielectric charge trapping structures adapted to be programmed and erased to store data. A method for manufacturing such devices includes patterning and forming the sources/drain lines with insulating liners prior to formation of the charge trapping structure over the channel regions.