摘要:
A one-time programmable memory array includes a first row conductor extending in a first row direction and disposed at a first elevation, a second row conductor extending in a second row direction and disposed at a second elevation and a column conductor extending in a column direction and disposed adjacent to the first row conductor and adjacent to the second row conductor. The array also includes a dielectric layer covering at least a portion of the column conductor, a fuse link coupled between the dielectric layer on the column conductor and the second row conductor.
摘要:
A method for fabricating a floating gate memory device comprises using self-aligned process for formation of a fourth poly layer over a partial gate structure that does not require an additional photolithographic step. Accordingly, enhanced device reliability can be achieved because a higher GCR can be maintained with lower gate bias levels. In addition, process complexity can be reduced, which can increase throughput and reduce device failures.
摘要:
A memory array comprises a semiconductor body having a plurality of trenches aligned generally in parallel. The trenches contain semiconductor material, such as doped amorphous silicon, and act as source/drain lines for the memory array. Insulating liners lie between the semiconductor material within the trenches and the semiconductor body. A plurality of word lines overlie the plurality of trenches and channel regions in the semiconductor body in an array of cross points. Charge trapping structures lie between the word lines and the channel regions at the cross points, providing an array of flash memory cells. The charge trapping structures comprise dielectric charge trapping structures adapted to be programmed and erased to store data. A method for manufacturing such devices includes patterning and forming the sources/drain lines with insulating liners prior to formation of the charge trapping structure over the channel regions.
摘要:
Methods of contact formation and memory arrays formed using such methods, which methods include providing a substrate having a contacting area; forming a plurality of line-shape structures extending in a first direction; forming a hard mask spacer beside the line-shape structure; forming an insulating material layer above the hard mask spacer; forming a contiguous trench in the insulating material layer extending in a second direction different from the first direction and exposing the contacting area; and forming a conductive line in the trench to contact the contacting area.
摘要:
A method for simulating operation of a charge trapping memory cell which computes the amount of charge trapped by determining first tunneling current through the tunneling layer, determining second tunneling current out of the charge trapping layer to the gate, determining third tunneling current escaping from traps in the charge trapping layer and tunneling out to the gate, and integrating said tunneling currents over a time interval. A change in threshold voltage can be computed for a transistor including the charge trapping structure. The parameter set can include only physical parameters, including layer thickness, band offsets and dielectric constants.
摘要:
Methods of contact formation and memory arrays formed using such methods, which methods include providing a memory array having a plurality of bit lines disposed below a surface of a semiconductor substrate and a plurality of word lines disposed above the surface of the substrate and transverse to the bit lines; forming a hard mask material layer over the plurality of word lines, wherein an area above at least one of the bit lines and between two consecutive word lines is exposed below an opening in the hard mask material layer; forming an insulating material layer above the hard mask material layer; forming a contiguous trench and via pattern in the insulating material layer above the area such that a portion of the at least one bit line is exposed below the pattern; and forming an interconnection comprising a conductive material disposed in the contiguous trench and via pattern wherein the interconnection is in conductive contact with the exposed portion of the at least one bit line.
摘要:
A method of fabricating a non-volatile memory is provided. In the fabricating method, a plurality of stack gate structures is formed on a substrate and a plurality of doped regions is formed in the substrate beside the stack gate structures. Then, a plurality of spacers is formed on the sidewalls of the stack gate structures. After that, a plurality of conductive pad layers is formed on the exposed doped regions. By forming the conductive pad layers, the resistance of the doped region in each memory cell can be reduced.
摘要:
A method of fabricating a non-volatile memory is provided. In the fabricating method, a plurality of stack gate structures is formed on a substrate and a plurality of doped regions is formed in the substrate beside the stack gate structures. Then, a plurality of spacers is formed on the sidewalls of the stack gate structures. After that, a plurality of conductive pad layers is formed on the exposed doped regions. By forming the conductive pad layers, the resistance of the doped region in each memory cell can be reduced.
摘要:
A method of fabricating a non-volatile memory is provided. A plurality of stack gate strips is formed on a substrate and a plurality of source/drain regions is formed in the substrate beside the stack gate strips. A plurality of dielectric strips is formed on the source/drain regions. A plurality of word lines is formed on the stack gate strips and the dielectric strips. Thereafter, the stack gate strips exposed by the word lines are removed to form a plurality of openings. A plurality of spacers is formed on the sidewalls of the openings and the word lines. A dielectric layer is formed over the substrate. A plurality of contacts is formed in the dielectric layer and the dielectric strips between two adjacent word lines.
摘要:
A method of forming a memory device having a self-aligned contact is described. The method includes providing a substrate having a floating gate dielectric layer formed thereon, forming a floating poly gate layer on the floating gate dielectric layer, forming a first silicon nitride layer on the floating poly gate layer, and forming a patterned photoresist layer on the first silicon nitride layer. The method further includes etching the first silicon nitride layer and the floating poly gate layer using the patterned photoresist layer as an etch mask, forming an oxide layer over the exposed etched areas, removing the patterned photoresist layer and the first silicon nitride layer to expose the floating poly gate layer, forming poly spaces in the floating poly gate layer, and depositing a second silicon nitride layer over the poly spaces of the floating poly gate layer to form a self-aligned contact.